Oracle学习之性能优化(七)join的实现方式
本文讨论一下join技术背后的机制。我们知道常用的表连接有如下几种
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:国际域名空间、虚拟主机、营销软件、网站建设、镇安网站维护、网站推广。
笛卡尔连接
内连接
左外连接
右外连接
全连接
这些sql的写法,想必大家都很清楚了,那么这些连接的数据访问是如何实现的呢?
nested loop
我们看如下查询
SQL> alter session set optimizer_mode=rule; Session altered. SQL> select ename,dname from emp,dept where emp.deptno=dept.deptno; 14 rows selected. Execution Plan ---------------------------------------------------------- Plan hash value: 3625962092 ------------------------------------------------ | Id | Operation | Name | ------------------------------------------------ | 0 | SELECT STATEMENT | | | 1 | NESTED LOOPS | | | 2 | NESTED LOOPS | | | 3 | TABLE ACCESS FULL | EMP | |* 4 | INDEX UNIQUE SCAN | PK_DEPT | | 5 | TABLE ACCESS BY INDEX ROWID| DEPT | ------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 4 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")
根据我们之前讲的执行计划解读,本查询是这样实现的:
全表扫描emp表(非阻塞扫描,并不是将数据全部取出,才执行下一步)。
将emp中的数据逐条取出,通过索引PK_DEPT查询出索引中的rowid,结果集变成(ename,rowid)
将2生成的结果集逐条取出,通过rowid去访问dept表,结果集变成(ename,dname)
将结果集返回。
这种以循环的方式取出数据的join实现方式就叫嵌套循环。
此计划可以用如下逻辑伪代码实现
for y in (for x in (select * from emp)loop index lookup the rowid for x.deptno output joined record(ename,dept.rowid) end loop)loop select * from dept where rowid=y.rowid output joined record(ename,dname) end loop
我们把emp表称之为驱动表(注驱动表与from子句的表顺序无关,主要看执行计划)。
此种连接方式,适用于驱动表返回数据比较少,并且被驱动表dept上deptno列有索引。如果查询返回n行,那么dept表将被扫描n次。此连接擅长于从结果集中迅速取出第一行。
Hash Join
Hash Join适合处理大型结果集,优化器选择两个表或者源数据中比较小的,使用join key在内存中建立一个hash table。然后扫描大表,并探查hash表,去发现匹配的记录。
小表称为驱动表,大表称为探查表
当hash table能全部放到内存中,此种情况最好。如果内存中放不下hash table,优化器将hash table分区,超出内存范围的分区将被写到临时表空间中。
我们分两种情况讨论hash join的实现
hash table 全部在内存里
hash table是Oracle根据join key利用一个hash函数将小表分割成多个bucket。hash table建立完成后,Oracle去扫描大表,并且采用相同的hash算法,将读入的数据也分割成多个bucket。bucket与bucket之间进行join运算,返回结果。直到大表读完为止。
2. hash table 不能全部放到内存中
这种情况有点麻烦,当Oracle发现内存无法完全存放小表,Oracle在构造hash table时,将小表进行分区,每个分区中再构造bucket 。当内存写满时,Oracle将内存中最大的分区写到tempfile中。用这个方法,直到小表hash table构造完成。此时,hashtable一部分数据在内存,一部分数据在tempfile。
当Oracle去扫描大表时,如果扫描的行通过hash在内存中能找到结果,就匹配成功。如果不能命中,则采用与hash table相同的分区方式,先将数据写入tempfile中。当大表全部扫描完毕,hash table内存中的部分已全部匹配完。此时依次将tempfile中的分区加载到内存中。重新扫描大表临时存在tempfile中的相应分区加以匹配。直到数据全部处理完。
SQL> insert into big_emp select * from big_emp; SQL> insert into big_emp select * from big_emp;#重复执行多次 SQL> / 458752 rows created. SQL> create table dept_new as select * from dept; Table created. SQL> set autot traceonly SQL> select * from big_emp a,dept_new b where a.deptno=b.deptno; 917504 rows selected. Execution Plan ---------------------------------------------------------- Plan hash value: 1925493178 ------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 917K| 54M| 1490 (2)| 00:00:18 | |* 1 | HASH JOIN | | 917K| 54M| 1490 (2)| 00:00:18 | | 2 | TABLE ACCESS FULL| DEPT_NEW | 4 | 120 | 3 (0)| 00:00:01 | | 3 | TABLE ACCESS FULL| BIG_EMP | 917K| 28M| 1482 (1)| 00:00:18 | ------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - access("A"."DEPTNO"="B"."DEPTNO") Note ----- - dynamic sampling used for this statement (level=2) Statistics ---------------------------------------------------------- 4 recursive calls 1 db block gets 66338 consistent gets 0 physical reads 0 redo size 62512398 bytes sent via SQL*Net to client 673349 bytes received via SQL*Net from client 61168 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 917504 rows processed
Sort Merge Joins
排序合并连接与嵌套循环和散列连接都不同,排序合并连接没有驱动表的概念。简言之,排序合并将依次处理排序第一个输入集,排序第二个输入集,然后合并结果。排序合并通常不如散列高效,因为两个结果集都需要排序,而散列连接在数据输出前,只需处理一个结果集。排序合并通常在非等值连接中有效。即连接条件不是一个等式而是范围比较(<或者>=). 或者是两个表的数据已经排好序啦。
我们看如下例子
SQL> set linesize 200 pagesize 200 SQL> set autot traceonly SQL> select a.ename,b.ename,a.hiredate,b.hiredate 2 from emp a,emp b 3 where a.empno<>b.empno and a.hiredate"B"."EMPNO") 5 - access("A"."HIREDATE"<"B"."HIREDATE") filter("A"."HIREDATE"<"B"."HIREDATE") Statistics ---------------------------------------------------------- 1 recursive calls 0 db block gets 12 consistent gets 0 physical reads 0 redo size 3500 bytes sent via SQL*Net to client 578 bytes received via SQL*Net from client 7 SQL*Net roundtrips to/from client 2 sorts (memory) 0 sorts (disk) 90 rows processed
再看一个等值连接的
SQL> select ename,dname from emp a,dept b where a.deptno=b.deptno; 14 rows selected. Execution Plan ---------------------------------------------------------- Plan hash value: 844388907 ---------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ---------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 14 | 308 | 6 (17)| 00:00:01 | | 1 | MERGE JOIN | | 14 | 308 | 6 (17)| 00:00:01 | | 2 | TABLE ACCESS BY INDEX ROWID| DEPT | 4 | 52 | 2 (0)| 00:00:01 | | 3 | INDEX FULL SCAN | PK_DEPT | 4 | | 1 (0)| 00:00:01 | |* 4 | SORT JOIN | | 14 | 126 | 4 (25)| 00:00:01 | | 5 | TABLE ACCESS FULL | EMP | 14 | 126 | 3 (0)| 00:00:01 | ---------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 4 - access("A"."DEPTNO"="B"."DEPTNO") filter("A"."DEPTNO"="B"."DEPTNO") Statistics ---------------------------------------------------------- 1 recursive calls 0 db block gets 10 consistent gets 0 physical reads 0 redo size 819 bytes sent via SQL*Net to client 523 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 1 sorts (memory) 0 sorts (disk) 14 rows processed
网站栏目:Oracle学习之性能优化(七)join的实现方式
网站链接:http://cdiso.cn/article/peedpd.html