如何使用Python的并行化执行
这篇文章主要介绍“如何使用Python的并行化执行”,在日常操作中,相信很多人在如何使用Python的并行化执行问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”如何使用Python的并行化执行”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
成都创新互联主营盖州网站建设的网络公司,主营网站建设方案,app软件定制开发,盖州h5重庆小程序开发搭建,盖州网站营销推广欢迎盖州等地区企业咨询
例子:N体问题
物理前提:
牛顿定律
时间离散运动方程
普通计算方法
import numpy as np import time import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D Ns = [2**i for i in range(1,10)] runtimes = [] def remove_i(x,i): "从所有粒子中去除本粒子" shape = (x.shape[0]-1,)+x.shape[1:] y = np.empty(shape,dtype=float) y[:i] = x[:i] y[i:] = x[i+1:] return y def a(i,x,G,m): "计算加速度" x_i = x[i] x_j = remove_i(x,i) m_j = remove_i(m,i) diff = x_j - x_i mag3 = np.sum(diff**2,axis=1)**1.5 result = G * np.sum(diff * (m_j / mag3)[:,np.newaxis],axis=0) return result def timestep(x0,v0,G,m,dt): N = len(x0) x1 = np.empty(x0.shape,dtype=float) v1 = np.empty(v0.shape,dtype=float) for i in range(N): a_i0 = a(i,x0,G,m) v1[i] = a_i0 * dt + v0[i] x1[i] = a_i0 * dt**2 + v0[i] * dt + x0[i] return x1,v1 def initial_cond(N,D): x0 = np.array([[1,1,1],[10,10,10]]) v0 = np.array([[10,10,1],[0,0,0]]) m = np.array([10,10]) return x0,v0,m def stimulate(N,D,S,G,dt): fig = plt.figure() ax = Axes3D(fig) x0,v0,m = initial_cond(N,D) for s in range(S): x1,v1 = timestep(x0,v0,G,m,dt) x0,v0 = x1,v1 t = 0 for i in x0: ax.scatter(i[0],i[1],i[2],label=str(s*dt),c=["black","green","red"][t]) t += 1 t = 0 plt.show() start = time.time() stimulate(2,3,3000,9.8,1e-3) stop = time.time() runtimes.append(stop - start)
效果图
Python 并行化执行
首先我们给出一个可以用来写自己的并行化程序的,额,一串代码
import datetime import multiprocessing as mp def accessional_fun(): f = open("accession.txt","r") result = float(f.read()) f.close() return result def final_fun(name, param): result = 0 for num in param: result += num + accessional_fun() * 2 return {name: result} if __name__ == '__main__': start_time = datetime.datetime.now() num_cores = int(mp.cpu_count()) print("你使用的计算机有: " + str(num_cores) + " 个核,当然了,Intel 7 以上的要除以2") print("如果你使用的 Python 是 32 位的,注意数据量不要超过两个G") print("请你再次检查你的程序是否已经改成了适合并行运算的样子") pool = mp.Pool(num_cores) param_dict = {'task1': list(range(10, 300)), 'task2': list(range(300, 600)), 'task3': list(range(600, 900)), 'task4': list(range(900, 1200)), 'task5': list(range(1200, 1500)), 'task6': list(range(1500, 1800)), 'task7': list(range(1800, 2100)), 'task8': list(range(2100, 2400)), 'task9': list(range(2400, 2700)), 'task10': list(range(2700, 3000))} results = [pool.apply_async(final_fun, args=(name, param)) for name, param in param_dict.items()] results = [p.get() for p in results] end_time = datetime.datetime.now() use_time = (end_time - start_time).total_seconds() print("多进程计算 共消耗: " + "{:.2f}".format(use_time) + " 秒") print(results)
运行结果:如下:
accession.txt 里的内容是2.5 这就是一个累加的问题,每次累加的时候都会读取文件中的2.5
如果需要运算的问题是类似于累加的问题,也就是可并行运算的问题,那么才好做出并行运算的改造
再举一个例子
import math import time import multiprocessing as mp def final_fun(name, param): result = 0 for num in param: result += math.cos(num) + math.sin(num) return {name: result} if __name__ == '__main__': start_time = time.time() num_cores = int(mp.cpu_count()) print("你使用的计算机有: " + str(num_cores) + " 个核,当然了,Intel 7 以上的要除以2") print("如果你使用的 Python 是 32 位的,注意数据量不要超过两个G") print("请你再次检查你的程序是否已经改成了适合并行运算的样子") pool = mp.Pool(num_cores) param_dict = {'task1': list(range(10, 3000000)), 'task2': list(range(3000000, 6000000)), 'task3': list(range(6000000, 9000000)), 'task4': list(range(9000000, 12000000)), 'task5': list(range(12000000, 15000000)), 'task6': list(range(15000000, 18000000)), 'task7': list(range(18000000, 21000000)), 'task8': list(range(21000000, 24000000)), 'task9': list(range(24000000, 27000000)), 'task10': list(range(27000000, 30000000))} results = [pool.apply_async(final_fun, args=(name, param)) for name, param in param_dict.items()] results = [p.get() for p in results] end_time = time.time() use_time = end_time - start_time print("多进程计算 共消耗: " + "{:.2f}".format(use_time) + " 秒") result = 0 for i in range(0,10): result += results[i].get("task"+str(i+1)) print(result) start_time = time.time() result = 0 for i in range(10,30000000): result += math.cos(i) + math.sin(i) end_time = time.time() print("单进程计算 共消耗: " + "{:.2f}".format(end_time - start_time) + " 秒") print(result)
运行结果:
力学问题改进:
import numpy as np import time from mpi4py import MPI from mpi4py.MPI import COMM_WORLD from types import FunctionType from matplotlib import pyplot as plt from multiprocessing import Pool def remove_i(x,i): shape = (x.shape[0]-1,) + x.shape[1:] y = np.empty(shape,dtype=float) y[:1] = x[:1] y[i:] = x[i+1:] return y def a(i,x,G,m): x_i = x[i] x_j = remove_i(x,i) m_j = remove_i(m,i) diff = x_j - x_i mag3 = np.sum(diff**2,axis=1)**1.5 result = G * np.sum(diff * (m_j/mag3)[:,np.newaxis],axis=0) return result def timestep(x0,v0,G,m,dt,pool): N = len(x0) takes = [(i,x0,v0,G,m,dt) for i in range(N)] results = pool.map(timestep_i,takes) x1 = np.empty(x0.shape,dtype=float) v1 = np.empty(v0.shape,dtype=float) for i,x_i1,v_i1 in results: x1[i] = x_i1 v1[i] = v_i1 return x1,v1 def timestep_i(args): i,x0,v0,G,m,dt = args a_i0 = a(i,x0,G,m) v_i1 = a_i0 * dt + v0[i] x_i1 = a_i0 * dt ** 2 +v0[i]*dt + x0[i] return i,x_i1,v_i1 def initial_cond(N,D): x0 = np.random.rand(N,D) v0 = np.zeros((N,D),dtype=float) m = np.ones(N,dtype=float) return x0,v0,m class Pool(object): def __init__(self): self.f = None self.P = COMM_WORLD.Get_size() self.rank = COMM_WORLD.Get_rank() def wait(self): if self.rank == 0: raise RuntimeError("Proc 0 cannot wait!") status = MPI.Status() while True: task = COMM_WORLD.recv(source=0,tag=MPI.ANY_TAG,status=status) if not task: break if isinstance(task,FunctionType): self.f = task continue result = self.f(task) COMM_WORLD.isend(result,dest=0,tag=status.tag) def map(self,f,tasks): N = len(tasks) P = self.P Pless1 = P - 1 if self.rank != 0: self.wait() return if f is not self.f: self.f = f requests = [] for p in range(1,self.P): r = COMM_WORLD.isend(f,dest=p) requests.append(r) MPI.Request.waitall(requests) results = [] for i in range(N): result = COMM_WORLD.recv(source=(i%Pless1)+1,tag=i) results.append(result) return results def __del__(self): if self.rank == 0: for p in range(1,self.p): COMM_WORLD.isend(False,dest=p) def simulate(N,D,S,G,dt): x0,v0,m = initial_cond(N,D) pool = Pool() if COMM_WORLD.Get_rank()==0: for s in range(S): x1,v1 = timestep(x0,v0,G,m,dt,pool) x0,v0 = x1,v1 else: pool.wait() if __name__ == '__main__': simulate(128,3,300,1.0,0.001) Ps = [1,2,4,8] runtimes = [] for P in Ps: start = time.time() simulate(128,3,300,1.0,0.001) stop = time.time() runtimes.append(stop - start) print(runtimes)
到此,关于“如何使用Python的并行化执行”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
网站标题:如何使用Python的并行化执行
文章源于:http://cdiso.cn/article/jpepsj.html