初识Spark入门

1. Spark简介

为企业提供网站设计制作、网站制作、网站优化、网络营销推广、竞价托管、品牌运营等营销获客服务。成都创新互联公司拥有网络营销运营团队,以丰富的互联网营销经验助力企业精准获客,真正落地解决中小企业营销获客难题,做到“让获客更简单”。自创立至今,成功用技术实力解决了企业“网站建设、网络品牌塑造、网络营销”三大难题,同时降低了营销成本,提高了有效客户转化率,获得了众多企业客户的高度认可!

  • 2009年,Spark诞生于伯克利大学的AMPLab实验室。最出Spark只是一个实验性的项目,代码量非常少,属于轻量级的框架。
  • 2010年,伯克利大学正式开源了Spark项目。
  • 2013年6月,Spark成为了Apache基金会下的项目,进入高速发展期。第三方开发者贡献了大量的代码,活跃度非常高
  • 2014年2月,Spark以飞快的速度称为了Apache的顶级项目,同时大数据公司Cloudera宣称加大Spark框架的投入来取代MapReduce
  • 2014年4月,大数据公司MapR投入Spark阵营, Apache Mahout放弃MapReduce,将使用Spark作为计算引擎。
  • 2014年5月,Spark 1.0.0 发布。
  • 2015年~,Spark在国内IT行业变得愈发火爆,越来越多的公司开始重点部署或者使用Spark来替代MR2、Hive、Storm等传统的大数据并行计算框架

2. Spark是什么?

  • Apache Spark™ is a unified analytics engine for large-scale data processing.
  • 大规模数据集的统一分析引擎
  • Spark是一个基于内存的通用并行计算框架,目的是让数据分析更加快速
  • Spark包含了大数据领域常见的各种计算框架
    • spark core(离线计算)
    • sparksql(交互式查询)
    • spark streaming(实时计算)
    • Spark MLlib (机器学习)
    • Spark GraphX (图计算)

3. Spark能代替hadoop吗?

​ 不完全对

​ 因为我们只能使用spark core代替mr做离线计算,数据的存储还是要依赖hdfs

​ Spark+Hadoop的组合,才是未来大数据领域最热门的组合,也是最有前景的组合!​

4. Spark的特点

速度

  • 内存计算在速度上要比mr快100倍以上
  • 磁盘计算在速度上要比mr快10倍以上

容易使用

  • 提供了java scala python R语言的api接口

一站式解决方案

  • spark core(离线计算)
  • spark sql(交互式查询)
  • spark streaming(实时计算)
  • .....

可以运行在任意的平台

  • yarn
  • Mesos
  • standalone

5. Spark的缺点

JVM的内存overhead太大,1G的数据通常需要消耗5G的内存 (Project Tungsten 正试图解决这个问题 )

不同的spark app之间缺乏有效的共享内存机制(Project Tachyon 在试图引入分布式的内存管理,这样不同的spark app可以共享缓存的数据)

6. Spark vs MR

6.1 mr的局限性

  • 抽象层次低,需要手工编写代码来完成,使用上难以上手
  • 只提供两个操作,Map和Reduce,表达力欠缺
  • 一个Job只有Map和Reduce两个阶段(Phase), 复杂的计算需要大量的Job完成,Job之间的依赖关系是由开发者自己管理的
  • 中间结果 (reduce的输出结果) 也放在HDFS文件系统中
  • 延迟高,只适用Batch数据处理,对于交互式数据处理,实时数据处理的支持不够
  • 对于迭代式数据处理性能比较差

6.2 Spark解决了mr中的那些问题?

抽象层次低,需要手工编写代码来完成,使用上难以上手

  • 通过spark中的RDD(Resilient distributed datasets)来进行抽象

只提供两个操作,Map和Reduce,表达力欠缺

  • 在spark中提供了多种算子

一个Job只有Map和Reduce两个阶段

  • 在spark中可以有多个阶段(stage)

中间结果也放在HDFS文件系统中(速度慢)

  • 中间结果放在内存中,内存放不下了会写入本地磁盘,而不是HDFS

延迟高,只适用Batch数据处理,对于交互式数据处理,实时数据处理的支持不够

  • sparksql和sparkstreaming解决了上面问题

对于迭代式数据处理性能比较差

  • 通过在内存中缓存数据,提高迭代式计算的性能

==因此,Hadoop MapReduce会被新一代的大数据处理平台替代是技术发展的趋势,而在新一代的大数据处理平台中,Spark目前得到了最广泛的认可和支持==

7. Spark的版本

  • spark1.6.3 : scala的版本2.10.5
  • spark2.2.0 : scala的版本2.11.8(新项目建议使用spark2.x的版本)
  • hadoop2.7.5

8. Spark单机版的安装

准备安装包spark-2.2.0-bin-hadoop2.7.tgz

tar -zxvf spark-2.2.0-bin-hadoop2.7.tgz -C /opt/
mv spark-2.2.0-bin-hadoop2.7/ spark

修改spark-env.sh

export JAVA_HOME=/opt/jdk
export SPARK_MASTER_IP=uplooking01
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_CORES=4
export SPARK_WORKER_INSTANCES=1
export SPARK_WORKER_MEMORY=2g
export HADOOP_CONF_DIR=/opt/hadoop/etc/hadoop

配置环境变量

#配置Spark的环境变量
export SPARK_HOME=/opt/spark
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

启动单机版spark

start-all-spark.sh

查看启动

http://uplooking01:8080

9. Spark分布式集群的安装

配置spark-env.sh

[root@uplooking01 /opt/spark/conf] 
  export JAVA_HOME=/opt/jdk
  #配置master的主机
  export SPARK_MASTER_IP=uplooking01
  #配置master主机通信的端口
  export SPARK_MASTER_PORT=7077
  #配置spark在每个worker中使用的cpu核数
  export SPARK_WORKER_CORES=4
  #配置每个主机有一个worker
  export SPARK_WORKER_INSTANCES=1
  #worker的使用内存是2gb
  export SPARK_WORKER_MEMORY=2g
  #hadoop的配置文件中的目录
  export HADOOP_CONF_DIR=/opt/hadoop/etc/hadoop

配置slaves

[root@uplooking01 /opt/spark/conf]
  uplooking03
  uplooking04
  uplooking05

分发spark

[root@uplooking01 /opt/spark/conf] 
  scp -r /opt/spark uplooking02:/opt/
  scp -r /opt/spark uplooking03:/opt/
  scp -r /opt/spark uplooking04:/opt/
  scp -r /opt/spark uplooking05:/opt/

分发uplooking01上配置的环境变量

[root@uplooking01 /] 
  scp -r /etc/profile uplooking02:/etc/
  scp -r /etc/profile uplooking03:/etc/
  scp -r /etc/profile uplooking04:/etc/
  scp -r /etc/profile uplooking05:/etc/

启动spark

[root@uplooking01 /] 
 start-all-spark.sh

10. Spark高可用集群

先停止正在运行的spark集群

修改spark-env.sh

#注释以下这两行内容
#export SPARK_MASTER_IP=uplooking01
#export SPARK_MASTER_PORT=7077

添加内容

export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=uplooking03:2181,uplooking04:2181,uplooking05:2181 -Dspark.deploy.zookeeper.dir=/spark"

分发修改的[配置

scp /opt/spark/conf/spark-env.sh uplooking02:/opt/spark/conf
scp /opt/spark/conf/spark-env.sh uplooking03:/opt/spark/conf
scp /opt/spark/conf/spark-env.sh uplooking04:/opt/spark/conf
scp /opt/spark/conf/spark-env.sh uplooking05:/opt/spark/conf

启动集群

[root@uplooking01 /]
 start-all-spark.sh
[root@uplooking02 /]
 start-master.sh

11. 第一个Spark-Shell程序

spark-shell --master spark://uplooking01:7077 
#spark-shell可以在启动时指定spark-shell这个application使用的资源(总核数,每个work上使用的内存)
spark-shell --master spark://uplooking01:7077 --total-executor-cores 6 --executor-memory 1g

#如果不指定 默认使用每个worker上全部的核数,和每个worker上的1g内存
sc.textFile("hdfs://ns1/sparktest/").flatMap(_.split(",")).map((_,1)).reduceByKey(_+_).collect

12. Spark中的角色

Master

  • 负责接收提交的作业的请求
  • master负责调度资源(在woker中启动CoarseGrainedExecutorBackend)

Worker

  • worker中的executor负责执行task

Spark-Submitter ===> Driver

  • 提交spark应用程序给master

13. Spark提交作业的大体流程

初识Spark入门

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持创新互联。


网站栏目:初识Spark入门
网站路径:http://cdiso.cn/article/jhshpd.html

其他资讯