Flink的CoGroup如何使用

这篇文章主要介绍“Flink的CoGroup如何使用”,在日常操作中,相信很多人在Flink的CoGroup如何使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Flink的CoGroup如何使用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

在网站制作、成都网站制作中从网站色彩、结构布局、栏目设置、关键词群组等细微处着手,突出企业的产品/服务/品牌,帮助企业锁定精准用户,提高在线咨询和转化,使成都网站营销成为有效果、有回报的无锡营销推广。成都创新互联公司专业成都网站建设10年了,客户满意度97.8%,欢迎成都创新互联客户联系。

CoGroup算子:将两个数据流按照key进行group分组,并将数据流按key进行分区的处理,最终合成一个数据流(与join有区别,不管key有没有关联上,最终都会合并成一个数据流)

示例环境

java.version: 1.8.x
flink.version: 1.11.1

示例数据源 (项目码云下载)

Flink 系例 之 搭建开发环境与数据

CoGroup.java

package com.flink.examples.functions;

import com.flink.examples.DataSource;
import com.google.gson.Gson;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.CoGroupFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
import java.time.Duration;
import java.util.Arrays;
import java.util.List;

/**
 * @Description CoGroup算子:将两个数据流按照key进行group分组,并将数据流按key进行分区的处理,最终合成一个数据流(与join有区别,不管key有没有关联上,最终都会合并成一个数据流)
 */
public class CoGroup {

    /**
     * 两个数据流集合,对相同key进行内联,分配到同一个窗口下,合并并打印
     * @param args
     * @throws Exception
     */
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        //watermark 自动添加水印调度时间
        //env.getConfig().setAutoWatermarkInterval(200);

        List> tuple3List1 = DataSource.getTuple3ToList();
        List> tuple3List2 = Arrays.asList(
                new Tuple3<>("伍七", "girl", 18),
                new Tuple3<>("吴八", "man", 30)
        );
        //Datastream 1
        DataStream> dataStream1 = env.fromCollection(tuple3List1)
                //添加水印窗口,如果不添加,则时间窗口会一直等待水印事件时间,不会执行apply
                .assignTimestampsAndWatermarks(WatermarkStrategy
                        .>forBoundedOutOfOrderness(Duration.ofSeconds(2))
                        .withTimestampAssigner((element, timestamp) -> System.currentTimeMillis()));
        //Datastream 2
        DataStream> dataStream2 = env.fromCollection(tuple3List2)
                //添加水印窗口,如果不添加,则时间窗口会一直等待水印事件时间,不会执行apply
                .assignTimestampsAndWatermarks(WatermarkStrategy
                        .>forBoundedOutOfOrderness(Duration.ofSeconds(2))
                        .withTimestampAssigner(new SerializableTimestampAssigner>() {
                            @Override
                            public long extractTimestamp(Tuple3 element, long timestamp) {
                                return System.currentTimeMillis();
                            }
                        })
                );

        //对dataStream1和dataStream2两个数据流进行关联,没有关联也保留
        //Datastream 3
        DataStream newDataStream = dataStream1.coGroup(dataStream2)
                .where(new KeySelector, String>() {
                    @Override
                    public String getKey(Tuple3 value) throws Exception {
                        return value.f1;
                    }
                })
                .equalTo(t3->t3.f1)
                .window(TumblingEventTimeWindows.of(Time.seconds(1)))
                .apply(new CoGroupFunction, Tuple3, String>() {
                    @Override
                    public void coGroup(Iterable> first, Iterable> second, Collector out) throws Exception {
                        StringBuilder sb = new StringBuilder();
                        Gson gson = new Gson();
                        //datastream1的数据流集合
                        for (Tuple3 tuple3 : first) {
                            sb.append(gson.toJson(tuple3)).append("\n");
                        }
                        //datastream2的数据流集合
                        for (Tuple3 tuple3 : second) {
                            sb.append(gson.toJson(tuple3)).append("\n");
                        }
                        out.collect(sb.toString());
                    }
                });
        newDataStream.print();
        env.execute("flink CoGroup job");
    }

}

打印结果

{"f0":"张三","f1":"man","f2":20}
{"f0":"王五","f1":"man","f2":29}
{"f0":"吴八","f1":"man","f2":30}
{"f0":"吴八","f1":"man","f2":30}

{"f0":"李四","f1":"girl","f2":24}
{"f0":"刘六","f1":"girl","f2":32}
{"f0":"伍七","f1":"girl","f2":18}
{"f0":"伍七","f1":"girl","f2":18}

到此,关于“Flink的CoGroup如何使用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


分享题目:Flink的CoGroup如何使用
网页URL:http://cdiso.cn/article/jgcepj.html

其他资讯