Kubernetes对CriticalPod的资源抢占原理是什么
本篇内容介绍了“Kubernetes对Critical Pod的资源抢占原理是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名与空间、虚拟空间、营销软件、网站建设、黄冈网站维护、网站推广。
Kubelet Predicate Admit时对Critical的资源抢占处理
kubelet 在Predicate Admit流程中,会对Pods进行各种Predicate准入检查,包括GeneralPredicates检查本节点是否有足够的cpu,mem,gpu资源。如果GeneralPredicates准入检测失败,对于nonCriticalPod则直接Admit失败,但如果是CriticalPod则会触发kubelet preemption进行资源抢占,按照一定规则杀死一些Pods释放资源,抢占成功,则Admit成功。
流程的源头应该从kubelet初始化的流程开始。
pkg/kubelet/kubelet.go:315 // NewMainKubelet instantiates a new Kubelet object along with all the required internal modules. // No initialization of Kubelet and its modules should happen here. func NewMainKubelet(...) (*Kubelet, error) { ... criticalPodAdmissionHandler := preemption.NewCriticalPodAdmissionHandler(klet.GetActivePods, killPodNow(klet.podWorkers, kubeDeps.Recorder), kubeDeps.Recorder) klet.admitHandlers.AddPodAdmitHandler(lifecycle.NewPredicateAdmitHandler(klet.getNodeAnyWay, criticalPodAdmissionHandler, klet.containerManager.UpdatePluginResources)) // apply functional Option's for _, opt := range kubeDeps.Options { opt(klet) } ... return klet, nil }
在NewMainKubelet对kubelet进行初始化时,通过AddPodAdmitHandler注册了criticalPodAdmissionHandler,CriticalPod的Admit的特殊之处就体现在criticalPodAdmissionHandler。
然后,我们进入kubelet的predicateAdmitHandler流程中,看看GeneralPredicates失败后的处理逻辑。
pkg/kubelet/lifecycle/predicate.go:58 func (w *predicateAdmitHandler) Admit(attrs *PodAdmitAttributes) PodAdmitResult { ... fit, reasons, err := predicates.GeneralPredicates(podWithoutMissingExtendedResources, nil, nodeInfo) if err != nil { message := fmt.Sprintf("GeneralPredicates failed due to %v, which is unexpected.", err) glog.Warningf("Failed to admit pod %v - %s", format.Pod(pod), message) return PodAdmitResult{ Admit: fit, Reason: "UnexpectedAdmissionError", Message: message, } } if !fit { fit, reasons, err = w.admissionFailureHandler.HandleAdmissionFailure(pod, reasons) if err != nil { message := fmt.Sprintf("Unexpected error while attempting to recover from admission failure: %v", err) glog.Warningf("Failed to admit pod %v - %s", format.Pod(pod), message) return PodAdmitResult{ Admit: fit, Reason: "UnexpectedAdmissionError", Message: message, } } } ... return PodAdmitResult{ Admit: true, } }
在kubelet predicateAdmitHandler中对Pod进行GeneralPredicates检查cpu,mem,gpu资源时,如果发现资源不足导致Admit失败,则接着调用HandleAdmissionFailure进行额外处理。前提提到,kubelet初始化时注册了criticalPodAdmissionHandler为HandleAdmissionFailure。
CriticalPodAdmissionHandler struct定义如下:
pkg/kubelet/preemption/preemption.go:41 type CriticalPodAdmissionHandler struct { getPodsFunc eviction.ActivePodsFunc killPodFunc eviction.KillPodFunc recorder record.EventRecorder }
CriticalPodAdmissionHandler的HandleAdmissionFailure方法就是处理CriticalPod特殊的逻辑所在。
pkg/kubelet/preemption/preemption.go:66 // HandleAdmissionFailure gracefully handles admission rejection, and, in some cases, // to allow admission of the pod despite its previous failure. func (c *CriticalPodAdmissionHandler) HandleAdmissionFailure(pod *v1.Pod, failureReasons []algorithm.PredicateFailureReason) (bool, []algorithm.PredicateFailureReason, error) { if !kubetypes.IsCriticalPod(pod) || !utilfeature.DefaultFeatureGate.Enabled(features.ExperimentalCriticalPodAnnotation) { return false, failureReasons, nil } // InsufficientResourceError is not a reason to reject a critical pod. // Instead of rejecting, we free up resources to admit it, if no other reasons for rejection exist. nonResourceReasons := []algorithm.PredicateFailureReason{} resourceReasons := []*admissionRequirement{} for _, reason := range failureReasons { if r, ok := reason.(*predicates.InsufficientResourceError); ok { resourceReasons = append(resourceReasons, &admissionRequirement{ resourceName: r.ResourceName, quantity: r.GetInsufficientAmount(), }) } else { nonResourceReasons = append(nonResourceReasons, reason) } } if len(nonResourceReasons) > 0 { // Return only reasons that are not resource related, since critical pods cannot fail admission for resource reasons. return false, nonResourceReasons, nil } err := c.evictPodsToFreeRequests(admissionRequirementList(resourceReasons)) // if no error is returned, preemption succeeded and the pod is safe to admit. return err == nil, nil, err }
如果Pod不是CriticalPod,或者ExperimentalCriticalPodAnnotation Feature Gate是关闭的,则直接返回false,表示Admit失败。
判断Admit的failureReasons是否包含
predicate.InsufficientResourceError
,如果包含,则调用evictPodsToFreeRequests触发kubelet preemption。注意这里的抢占不同于scheduler preemtion,不要混淆了。
evictPodsToFreeRequests就是kubelet preemption进行资源抢占的逻辑实现,其核心就是调用getPodsToPreempt挑选合适的待杀死的Pods(podsToPreempt)。
pkg/kubelet/preemption/preemption.go:121 // getPodsToPreempt returns a list of pods that could be preempted to free requests >= requirements func getPodsToPreempt(pods []*v1.Pod, requirements admissionRequirementList) ([]*v1.Pod, error) { bestEffortPods, burstablePods, guaranteedPods := sortPodsByQOS(pods) // make sure that pods exist to reclaim the requirements unableToMeetRequirements := requirements.subtract(append(append(bestEffortPods, burstablePods...), guaranteedPods...)...) if len(unableToMeetRequirements) > 0 { return nil, fmt.Errorf("no set of running pods found to reclaim resources: %v", unableToMeetRequirements.toString()) } // find the guaranteed pods we would need to evict if we already evicted ALL burstable and besteffort pods. guarateedToEvict, err := getPodsToPreemptByDistance(guaranteedPods, requirements.subtract(append(bestEffortPods, burstablePods...)...)) if err != nil { return nil, err } // Find the burstable pods we would need to evict if we already evicted ALL besteffort pods, and the required guaranteed pods. burstableToEvict, err := getPodsToPreemptByDistance(burstablePods, requirements.subtract(append(bestEffortPods, guarateedToEvict...)...)) if err != nil { return nil, err } // Find the besteffort pods we would need to evict if we already evicted the required guaranteed and burstable pods. bestEffortToEvict, err := getPodsToPreemptByDistance(bestEffortPods, requirements.subtract(append(burstableToEvict, guarateedToEvict...)...)) if err != nil { return nil, err } return append(append(bestEffortToEvict, burstableToEvict...), guarateedToEvict...), nil }
kubelet preemtion时候挑选待杀死Pods的逻辑如下:
如果该Pod的某个Resource request quantity超过了现在的所有的bestEffortPods, burstablePods, guaranteedPods的该Resource request quantity,则podsToPreempt为nil,意味着无合适Pods以释放。
如果释放所有bestEffortPods, burstablePods的资源都不足够,则再挑选guaranteedPods(guarateedToEvict)。挑选的规则是:
规则一:越少的Pods被释放越好;
规则二:释放的资源越少越好;
规则一的优先级比规则二高;
如果释放所有bestEffortPods及guarateedToEvict的资源都不足够,则再挑选burstablePods(burstableToEvict)。挑选的规则同上。
如果释放所有burstableToEvict及guarateedToEvict的资源都不足够,则再挑选bestEffortPods(bestEffortToEvict)。挑选的规则同上。
也就是说:Pod Resource QoS优先级越低的越先被抢占,同一个QoS Level内挑选Pods按照如下规则:
规则一:越少的Pods被释放越好;
规则二:释放的资源越少越好;
规则一的优先级比规则二高;
Priority Admission Controller对CriticalPod的特殊处理
我们先看看几类特殊的、系统预留的CriticalPod:
ClusterCriticalPod: PriorityClass Name是
system-cluster-critical
的Pod。NodeCriticalPod:PriorityClass Name是
system-node-critical
的Pod。
如果AdmissionController中启动了Priority Admission Controller,那么在创建Pod时对Priority的检查也存在CriticalPod的特殊处理。
Priority Admission Controller主要作用是根据Pod中指定的PriorityClassName替换成对应的Spec.Pritory数值。
plugin/pkg/admission/priority/admission.go:138 // admitPod makes sure a new pod does not set spec.Priority field. It also makes sure that the PriorityClassName exists if it is provided and resolves the pod priority from the PriorityClassName. func (p *priorityPlugin) admitPod(a admission.Attributes) error { operation := a.GetOperation() pod, ok := a.GetObject().(*api.Pod) if !ok { return errors.NewBadRequest("resource was marked with kind Pod but was unable to be converted") } // Make sure that the client has not set `priority` at the time of pod creation. if operation == admission.Create && pod.Spec.Priority != nil { return admission.NewForbidden(a, fmt.Errorf("the integer value of priority must not be provided in pod spec. Priority admission controller populates the value from the given PriorityClass name")) } if utilfeature.DefaultFeatureGate.Enabled(features.PodPriority) { var priority int32 // TODO: @ravig - This is for backwards compatibility to ensure that critical pods with annotations just work fine. // Remove when no longer needed. if len(pod.Spec.PriorityClassName) == 0 && utilfeature.DefaultFeatureGate.Enabled(features.ExperimentalCriticalPodAnnotation) && kubelettypes.IsCritical(a.GetNamespace(), pod.Annotations) { pod.Spec.PriorityClassName = scheduling.SystemClusterCritical } if len(pod.Spec.PriorityClassName) == 0 { var err error priority, err = p.getDefaultPriority() if err != nil { return fmt.Errorf("failed to get default priority class: %v", err) } } else { // Try resolving the priority class name. pc, err := p.lister.Get(pod.Spec.PriorityClassName) if err != nil { if errors.IsNotFound(err) { return admission.NewForbidden(a, fmt.Errorf("no PriorityClass with name %v was found", pod.Spec.PriorityClassName)) } return fmt.Errorf("failed to get PriorityClass with name %s: %v", pod.Spec.PriorityClassName, err) } priority = pc.Value } pod.Spec.Priority = &priority } return nil }
同时满足以下所有条件时,给Pod的Spec.PriorityClassName
赋值为system-cluster-critical
,即认为是ClusterCriticalPod。
如果Enable了ExperimentalCriticalPodAnnotation和PodPriorityFeature Gate;
该Pod没有指定PriorityClassName;
该Pod属于kube-system namespace;
该Pod打了
scheduler.alpha.kubernetes.io/critical-pod=""
Annotation;
“Kubernetes对Critical Pod的资源抢占原理是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
分享题目:Kubernetes对CriticalPod的资源抢占原理是什么
文章地址:http://cdiso.cn/article/ipijdh.html