python线性规划问题怎么处理
这篇文章主要讲解了“python线性规划问题怎么处理”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“python线性规划问题怎么处理”吧!
创新新互联,凭借10余年的成都做网站、网站制作经验,本着真心·诚心服务的企业理念服务于成都中小企业设计网站有1000多家案例。做网站建设,选创新互联建站。
说明
1、问题定义,确定决策变量、目标函数和约束条件。
2、模型构建,由问题描述建立数学方程,转化为标准形式的数学模型。
3、模型求解,用标准模型的优化算法对模型进行求解,得到优化结果。
实例
不等式1为大于等于,应该转换为小于等于:-2X1 + 5X2 - X3 <= -10
import numpy as np from scipy import optimize as op np.set_printoptions(suppress=True) z = np.array([2, 3, -5]) A_up = np.array([[-2, 5, -1], [1, 3, 1]]) B_up = np.array([-10, 12]) A_eq = np.array([1, 1, 1]) B_eq = np.array([7]) x1 = (0, 7) x2 = (0, 7) x3 = (0, 7) res = op.linprog(-z, A_up, B_up, A_eq, B_eq, bounds=(x1, x2, x3)) print(res)
感谢各位的阅读,以上就是“python线性规划问题怎么处理”的内容了,经过本文的学习后,相信大家对python线性规划问题怎么处理这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!
网站栏目:python线性规划问题怎么处理
本文地址:http://cdiso.cn/article/ihggce.html