php可视化数据表 php可视化数据表怎么做

大数据可视化工具哪个做出来最漂亮

经研究表明,人类大脑对视觉信息的处理优于对文本的处理。因此,数据可视化是使用图表、图形和设计元素把数据进行可视化,把相对复杂、抽象的数据通过可视的方式以人们更易理解的形式展示出来的一系列手段。数据可视化可以使人们更有效率地完成某些任务,我们可以理解为三点优势:

公司主营业务:成都网站建设、网站制作、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联推出江宁免费做网站回馈大家。

美观展示: 用数据展示企业特色,大会展台,媒体现场展示等

数据驱动:实时查看业务概况、监控预警、驱动内部快速响应

发掘价值:可视化数据呈现后,带来的视觉感受会帮助人发现新的因素

在 图扑软件(Hightopo,以下简称 HT )技术支持下,数据可视化除了“可视”,还有可交流、可互动的特点。设计带来的不仅是瞬息处理海量数据搭配酷炫的可视化样式所引起的视觉震撼,更应注重为业务需求服务,设计出符合不同行业需求的个性定制可视化,利于企业做出正确的商业决策,以有根据的数据呈现而帮助企业进行更科学的判断而避免决策的失误。

先确定图表类型,下一步要进入到布局具体的信息位置,确立交互稿的步骤。确立交互稿的第一步就是要确定大屏的尺寸。客户的大屏尺寸不用会影响到整体的布局和效果,设计的时候也要考虑下是否有拼接大屏接缝的问题,尽量以拼接屏尺寸来确立栅格化布局。

尺寸确立后,接下来要对设计稿进行布局和页面的划分。布局这里我们就要参考第一项的业务需求优先级来布局画面分割面积。核心业务指标安排在中间位置、占较大面积;其余的指标按优先级依次在核心指标周围展开。一般把有关联的指标让其相邻或靠近,把图表类型相近的指标放一起,这样能减少观者认知上的负担并提高信息传递的效率。视觉上要尽量规避文字罗列或图表罗列,注意方圆图表的面积比例问题等,也是布局期间需要注意的事项。

设计风格的确定主要以下几点来确定:

设计风格的选择切勿追求效果炫酷而不符合业务需求,选择最合适的而不是选择最绚烂的尤为重要。因为设计中涉及的范围比较广,我们在后两章节单独着重讲解。下面展示部分我们做的不同行业对应的不同构图布局与元素的应用案例:

图扑软件(Hightopo)

发动机的可视化以突出发电机产品为主,周围 UI 以大圆角形式设计,使视觉由四周向中间包围,集中于中心。

图扑软件(Hightopo)

挖掘机的可视化采用了大地色进行设计,采用了色彩共情的原理,结合简洁的线性UI,使大屏在接地气的同时不失高端雅致的效果。

图扑软件(Hightopo)

医院的可视化设计以冷白色为主,突出医院给人的干净,严肃的感觉,仿佛能闻到消毒水的气味。以模型展示为主,按钮样式也采用了以面为主的设计配合大面积色块分布为主的模型设计。

图扑软件(Hightopo)

地铁站的可视化以写实风格为主,再现了真实地铁站的样貌,以及身临其境的动画交互体验。

图扑软件(Hightopo)

农业可视化案例尝试了 low poly 风格,以简洁插画风与略抽象画的模型浓缩了农业的运作场景,色调以贴近植物的绿色为主,设计出可爱的动画风格可视化效果。

同时在设计时因为使用的设备不同,大屏有它自己独特的分辨率、屏幕组成、色彩显示以及运行、展示环境,这里的很多问题只有设计稿投到大屏上才能够被发现,所以这一步在样图沟通确认环节非常重要,有时候需要开发出demo,反复测试多次来修改协调最终上屏效果。在测试时从设计上可以重点注重以下几点:

之前确立的布局在放入设计内容后是否依然合适

确立的图表类型带入数据后是否仍然客观准确

根据关键元素、色彩、结构、质感打造出的页面风格是否基本传达出了预期的氛围和感受

已有的样式、数据内容、动效等在开发实现方面是否存在问题

大屏是否存在色差、文字内容是否清晰可见、页面是否存在变形拉伸等现象

PHP格式的可视化要怎么弄?

在网上下载个phpnow

,解压安装,自动配置了php+mysql+apache,mysql

数据库用浏览器打开

phpmyadmin

/,就可以登录了,dw做的网页放在phpnow安装目录下htdocs下即可,打开用加上网页名字,比如test.html,就是

惊艳:近百种数据可视化工具效果展示,总有一款适合你!

导读 :俗话说“巧妇难为无米之炊”。数据时代,没有一款好的数据可视化分析工具,光有团队怎么行?商场如战场,数据是把枪。亚马逊运用大数据为客户推荐商品信息,阿里用大数据成立了小微金融服务集团,而谷歌更是计划用大数据接管世界……不知不觉,数据已经成为我们生活中必不可少的利器。本文收集了各个平台各种行业的数据可视化分析工具,让你不仅大饱眼福,而且还可以让你事半功倍。

一款免费的新型大数据可视化分析工具,操作简单,支持多种数据源,上卷下钻,数据预测,聚类分析,相关性分析,数据联想,决策树,地图,组合图等功能。

Charting Fonts是将符号字体与字体整合(把符号变成字体),创建出漂亮的矢量化图标。

Gephi是进行 社会 图谱数据可视化分析的工具,不但能处理大规模数据集并且Gephi是一个可视化的网络 探索 平台,用于构建动态的、分层的数据图表。

CartoDB是一个不可错过的网站,你可以用CartoDB很轻易就把表格数据和地图关联起来,这方面CartoDB是最优秀的选择。

Google Chart提供了一种非常完美的方式来可视化数据,提供了大量现成的图标类型,从简单的线图表到复杂的分层树地图等。它还内置了动画和用户交互控制。

D3(Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。

Crossfilter既是图表,又是互动图形用户界面的小程序,当你调整一个图表中的输入范围时,其他关联图表的数据也会随之改变

Raphael是创建图表和图形的JavaScript库,与其他库最大的不同是输出格式仅限SVG和VML.

R语言是主要用于统计分析、绘图的语言和操作环境。虽然R主要用于统计分析或者开发统

计相关的软件,但也有用作矩阵计算。其分析速度可比美GNUOctave甚至商业软件MATLAB。

如果你需要制作信息图而不仅仅是数据可视化,Visual.ly是最流行的一个选择。

Weka是一个能根据属性分类和集群大量数据的优秀工具,Weka不但是数据分析的强大工具,还能生成一些简单的图表。

NodeBox是OS X上创建二维图形和可视化的应用程序,你需要了解Python程序,NodeBox与Processing类似,但没有Processing的互动功能。

Processing是数据可视化的招牌工具。你只需要编写一些简单的代码,然后编译成Java。Processing可以在几乎所有平台上运行。

Leaflet是一个开源的JavaScript库,用来开发移动友好地交互地图。

Openlayers可能是所有地图库中可靠性最高的一个。虽然文档注释并不完善。且学习曲线非常陡峭,但是对于特定的任务来说,Openlayers能够提供一些其他地图库都没有的特殊工具。

PolyMaps是一个地图库,主要面向数据可视化用户。PolyMaps在地图风格化方面有独到之处,类似CSS样式表的选择器。

Timeline即时间轴,用户通过这个工具可以一目了然的知道自己在何时做了什么。

jsDraw2DX是一个标准的JavaScript库,用来创建任意类型的SVG交互式图形,可生成包括线、矩形、多边形、椭圆、弧线等图形。

iCharts提供可一个用于创建并呈现引人注目图表的托管解决方案。有许多不同种类的图表可供选择,每种类型都完全可定制,以适合网站的主题。iCharts有交互元素,可以从Google Doc、Excel表单和其他来源中获取数据。

Modest Maps是一个轻量级、可扩展的、可定制的和免费的地图显示类库,这个类库能帮助开发人员在他们自己的项目里能够与地图进行交互。

Many Eyes是一个Web应用程序,用来创建、分享和讨论用户上传图形数据。

Anychart是一个灵活的基于Flash/JavaScript(HTML5)的图表解决方案、跨浏览器、跨平台。除了图表功能外,它还有一款收费的交互式图表和仪表。

Kartograph不需要任何地图提供者像Google Maps,用来建立互动式地图,由两个libraries组成,从空间数据开放格式,利用向量投影的Python library以及post GIS,并将两者结合到SVG和JavaScript library,并把这些SVG资料转变成互动性地图。

Sigma.js是一个开源的轻量级库,用来显示交互式的静态和动态图表。

经常使用开源软件的朋友应该很熟悉ECharts,大家都知道去年春节以及近期央视大规划报道的百度大数据产品,如百度迁徙、百度司南、百度大数据预测等等,这些产品的数据可视化均是通过ECharts来实现的。

Zoho Reports支持丰富的功能帮助不同的用户解决各种个性化需求,支持SQL查询、类四暗自表格界面等。

Quantum GIS(QDIS)是一个用户界面友好、开源代码的GIS客户端程序,支持数据的可视化、管理、编辑与分析和印刷地图的制作。

Tableau Public是一款桌面可视化工具,用户可以创建自己的数据可视化,并将交互性数据可视化发布到网页上。

Paper.js是一个开源向量图表叙述架构,能够在HTML5 Canvas 运作,对于初学者来说它是很容易学习的,其中也有很多专业面向可以提供中阶及高阶使用者。

Dundas Chart处于行业领先地位的NET图表处理控件,于2009年被微软收购,并将图表产品的一部分功能集成到Visual Studio中。

TimeFlow Analytical Timeline是为了暂时性资料的视觉化工具,现在有alpha版本因此有机会可以发现差错,提供以下不同的呈现方式:时间轴、日历、柱状图、表格等。

Gantti是一个开源的PHP类,帮助用户即时生成Gantti图表。使用Gantti创建图表无需使用JavaScript,纯HTML-CSS3实现。图表默认输出非常漂亮,但用户可以自定义样式进行输出(SASS样式表)。

Smoothie Charts是一个十分小的动态流数据图表路。通过推送一个webSocket来显示实时数据流。Smoothie Charts只支持Chorme和Safari浏览器,并且不支持刻印文字或饼图,它很擅长显示流媒体数据。

Flot是一个优秀的线框图表库,支持所有支持canvas的浏览器(目前主流的浏览器如火狐、IE、Chrome等都支持)。

Pizza Pie Charts是个响应式饼图图表,基于Adobe Snap SVG框架,通过HTML标记和CSS来替代JavaScript对象,更容易集成各种先进的技术。

Fusion Charts Suit XT是一款跨平台、跨浏览器的JavaScript图表组件,为你提供令人愉悦的JavaScript图表体验。它是最全面的图表解决方案,包含90+图表类型和众多交互功能,包括3D、各种仪表、工具提示、向下钻取、缩放和滚动等。它拥有完整的文档以及现成的演示,可以帮助你快速创建图表。

Protovis是一个可视化JavaScript图表生成工具。

Arbor.Js提供有效率、以力导向的版面配置演算法,抽象画图表组织以及筛选更新的处理。

Highchart.js是单纯由JavaScript所写的图表资料库,提供简单的方法来增加互动性图表来表达你的网站或网站应用程式。目前它能支援线图、样条函数图。

Circos最初主要用于基因组序列相关数据的可视化,目前已应用于多个领域,例如:影视作品中的人物关系分析,物流公司的订单来源和流向分析等,大多数关系型数据都可以尝试用Circos来可视化。

NodeXLDE 主要功能是社交网络可视化。

BirdEye是Decearative Visual Analytics,它属于一个群体专案,为了要提升设计和广泛的开源资料视觉化发展,并且为了Adobe Flex建视觉分析图库,这个动作以叙述性的资料库为主,让使用者能够建立多元资料视觉化界面来分析以及呈现资讯。

Visualize Free是一个建立在高阶商业后台集游InetScoft开发的视觉化软体免费的视觉分析工具,可从多元变量资料筛选并看其趋势,或是利用简单地点及方法来切割资料或是小范围的资料。

OpenStreetMap是一个世界地图,由像您一样的人们所构筑,可依据开放协议自由使用。

OpenHeatMap简单易用,用户可以用它上传数据、创建地图、交流信息。它可以把数据(如Google Spreadsheet的表单)转化为交互式的地图应用,并在网上分享。

GeoCommons可以使用户构建富交互可视化应用来解决问题,即使他们没有任何传统地图使用经验。你可以将实 社会 化数据或者GeoCommons保存的超5万份开源数据在地图上可视化,创造带交互的可视化分析作品,并将作品嵌入网站、博客或分享到社交网络上。

来源: 悟空智能 科技

PHP数据库是不是能可视化操作

mysql有一款可视化软件。叫做navcat,现在最新版本是8.有中文版和英文版。


新闻标题:php可视化数据表 php可视化数据表怎么做
网站路径:http://cdiso.cn/article/hicosh.html

其他资讯