深入了解apachekafka数据采集
apache kafka数据采集是什么?相信大部分人都不太了解,今天小编为了让大家更加了解apache kafka数据采集,给大家总结了以下内容,一起往下看吧。
创新互联公司是由多位在大型网络公司、广告设计公司的优秀设计人员和策划人员组成的一个具有丰富经验的团队,其中包括网站策划、网页美工、网站程序员、网页设计师、平面广告设计师、网络营销人员及形象策划。承接:成都做网站、成都网站建设、成都外贸网站建设、网站改版、网页设计制作、网站建设与维护、网络推广、数据库开发,以高性价比制作企业网站、行业门户平台等全方位的服务。
Apache Kafka - 介绍
Apache Kafka起源于LinkedIn,后来成为2011年的开源Apache项目,然后在2012年成为Apache的一流项目。Kafka以Scala和Java编写。Apache Kafka是基于发布订阅的容错消息系统。它是快速,可扩展和分布的设计。
本教程将探讨Kafka的原理,安装,操作,然后将介绍Kafka集群的部署。最后,我们将总结实时应用和与Big Data Technologies的集成。
在进行本教程之前,您必须对 Java,Scala,分布式消息系统和Linux环境有很好的了解。
在大数据中,使用了大量的数据。关于数据,我们有两个主要挑战。第一个挑战是如何收集大量数据,第二个挑战是分析收集的数据。为了克服这些挑战,您需要一个消息系统。
Kafka专为分布式高吞吐量系统而设计。Kafka作为一个更传统的邮件经纪人的替代品往往运作良好。与其他消息系统相比,Kafka具有更好的吞吐量,内置的分区,复制和固有的容错能力,使其非常适合大规模的消息处理应用。
什么是邮件系统?
消息系统负责将数据从一个应用程序传输到另一个应用程序,因此应用程序可以专注于数据,但不用担心如何共享数据。分布式消息传递基于可靠消息队列的概念。消息在客户端应用程序和消息系统之间异步排队。两种类型的消息传递模式是可用的 - 一种是点对点,另一种是发布订阅(pub-sub)消息系统。大多数消息传递模式跟随pub-sub。
点到点信息系统
在点对点系统中,消息将保留在队列中。一个或多个消费者可以使用队列中的消息,但是特定消息可以由最多仅一个消费者消费。一旦消费者读取队列中的消息,它将从该队列中消失。该系统的典型示例是订单处理系统,其中每个订单将由一个订单处理器处理,但多订单处理器可以同时工作。下图描绘了结构。
发布订阅消息系统
在发布订阅系统中,邮件将保留在主题中。与点对点系统不同,消费者可以订阅一个或多个主题并消费该主题中的所有消息。在Publish-Subscribe系统中,消息生成器被称为发布者,消息消费者被称为订户。一个现实的例子是Dish TV,它发布不同的频道,如运动,电影,音乐等,任何人都可以订阅自己的频道,并获得他们的订阅频道。
什么是Kafka?
Apache Kafka是分布式发布订阅消息传递系统和强大的队列,可以处理大量数据,并使您能够将消息从一个端点传递到另一个终端。Kafka适用于离线和在线消息消费。Kafka消息被保留在磁盘上,并在集群内复制以防止数据丢失。Kafka建立在ZooKeeper同步服务之上。它与Apache Storm和Spark完美结合,实时流式传输数据分析。
优点 以下是Kafka的几个好处 -
可靠性 - Kafka是分布式,分区式,复制型和容错型。
可扩展性 - Kafka消息系统轻松扩展,无需停机时间。
耐用性 - Kafka使用分布式提交日志,这意味着邮件尽可能快地依然存在于磁盘上,因此它是耐用的。
性能 - Kafka对于发布和订阅消息都具有高吞吐量。它保持稳定的性能,即使存储了许多TB的消息。
Kafka非常快,保证零停机和零数据丢失。
用例
Kafka可用于许多用例。其中有些列在下面 -
指标 - Kafka经常用于运行监控数据。这涉及从分布式应用程序聚合统计信息,以产生操作数据的集中式提要。
日志聚合解决方案 - Kafka可以在整个组织中使用,从多个服务收集日志,并以标准格式提供给多个服务器。
流处理 - 流行框架(如Storm和Spark
Streaming)从主题读取数据,处理它,并将处理后的数据写入可用于用户和应用程序的新主题。Kafka的强大耐用性在流处理方面也非常有用。
Kafka需要
Kafka是处理所有实时数据源的统一平台。Kafka支持低延迟消息传递,并在存在机器故障的情况下保证容错。它具有处理大量不同消费者的能力。Kafka非常快,执行200万次写/秒。Kafka将所有数据保留到磁盘,这实质上意味着所有的写入都将转到操作系统(RAM)的页面缓存。这将数据从页面缓存传输到网络套接字非常有效。
看完上诉内容,你们对apache kafka数据采集大概了解了吗?如果想了解更多相关文章内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!
网页题目:深入了解apachekafka数据采集
网页URL:http://cdiso.cn/article/gpcejd.html