Kafka的知识点汇总

本篇内容介绍了“Kafka的知识点汇总”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

创新互联是一家专注于做网站、成都做网站与策划设计,丽江网站建设哪家好?创新互联做网站,专注于网站建设十载,网设计领域的专业建站公司;建站业务涵盖:丽江等地区。丽江做网站价格咨询:028-86922220

1、Kafka是一种分布式的,基于发布/订阅的消息系统。

2、常用Message Queue对比

  • RabbitMQ
    RabbitMQ是使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正因如此,它非常重量级,更适合于企业级的开发。同时实现了Broker构架,这意味着消息在发送给客户端时先在中心队列排队。对路由,负载均衡或者数据持久化都有很好的支持。

  • redis
    Redis是一个基于Key-Value对的NoSql数据库,开发维护很活跃。虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。

  • ZeroMQ
    ZeroMQ号称最快的消息队列系统,尤其针对大吞吐量的需求场景。ZMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,技术上的复杂度是对这MQ能够应用成功的挑战。ZeroMQ具有一个独特的非中间件的模式,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序将扮演了这个服务角色。你只需要简单的引用ZeroMQ程序库,可以使用NuGet安装,然后你就可以愉快的在应用程序之间发送消息了。但是ZeroMQ仅提供非持久性的队列,也就是说如果宕机,数据将会丢失。其中,Twitter的Storm 0.9.0以前的版本中默认使用ZeroMQ作为数据流的传输(Storm从0.9版本开始同时支持ZeroMQ和Netty作为传输模块)。

  • ActiveMQ
    ActiveMQ是Apache下的一个子项目。 类似于ZeroMQ,它能够以代理人和点对点的技术实现队列。同时类似于RabbitMQ,它少量代码就可以高效地实现高级应用场景。

  • Kafka/Jafka
    Kafka是Apache下的一个子项目,是一个高性能跨语言分布式发布/订阅消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。具有以下特性:快速持久化,可以在O(1)的系统开销下进行消息持久化;高吞吐,在一台普通的服务器上既可以达到10W/s的吞吐速率;完全的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,自动实现复杂均衡;支持Hadoop数据并行加载,对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka通过Hadoop的并行加载机制来统一了在线和离线的消息处理。Apache Kafka相对于ActiveMQ是一个非常轻量级的消息系统,除了性能非常好之外,还是一个工作良好的分布式系统。

3、经验证,顺序写磁盘效率比随机写内存还要高,这是Kafka高吞吐率的一个很重要的保证。

4、每一条消息被发送到broker时,会根据paritition规则选择被存储到哪一个partition。如果partition规则设置的合理,所有消息可以均匀分布到不同的partition里,这样就实现了水平扩展。(如果一个topic对应一个文件,那这个文件所在的机器I/O将会成为这个topic的性能瓶颈,而partition解决了这个问题)。

5、对于传统的message queue而言,一般会删除已经被消费的消息,而Kafka集群会保留所有的消息,无论其被消费与否。当然,因为磁盘限制,不可能永久保留所有数据(实际上也没必要),因此Kafka提供两种策略去删除旧数据。一是基于时间,二是基于partition文件大小。例如可以通过配置$KAFKA_HOME/config/server.properties,让Kafka删除一周前的数据,也可通过配置让Kafka在partition文件超过1GB时删除旧数据。

6、Kafka读取特定消息的时间复杂度为O(1),即与文件大小无关,所以这里删除文件与Kafka性能无关,选择怎样的删除策略只与磁盘以及具体的需求有关。另外,Kafka会为每一个consumer group保留一些metadata信息—当前消费的消息的position,也即offset。这个offset由consumer控制。正常情况下consumer会在消费完一条消息后线性增加这个offset。当然,consumer也可将offset设成一个较小的值,重新消费一些消息。因为offet由consumer控制,所以Kafka broker是无状态的,它不需要标记哪些消息被哪些consumer过,不需要通过broker去保证同一个consumer group只有一个consumer能消费某一条消息,因此也就不需要锁机制,这也为Kafka的高吞吐率提供了有力保障。

7、一条消息只有被“in sync” list里的所有follower都从leader复制过去才会被认为已提交。这样就避免了部分数据被写进了leader,还没来得及被任何follower复制就宕机了,而造成数据丢失(consumer无法消费这些数据)。而对于producer而言,它可以选择是否等待消息commit,这可以通过request.required.acks来设置。这种机制确保了只要“in sync” list有一个或以上的flollower,一条被commit的消息就不会丢失。

8、这里的复制机制即不是同步复制,也不是单纯的异步复制。事实上,同步复制要求“活着的”follower都复制完,这条消息才会被认为commit,这种复制方式极大的影响了吞吐率(高吞吐率是Kafka非常重要的一个特性)。而异步复制方式下,follower异步的从leader复制数据,数据只要被leader写入log就被认为已经commit,这种情况下如果follwer都落后于leader,而leader突然宕机,则会丢失数据。而Kafka的这种使用“in sync” list的方式则很好的均衡了确保数据不丢失以及吞吐率。follower可以批量的从leader复制数据,这样极大的提高复制性能(批量写磁盘),极大减少了follower与leader的差距(前文有说到,只要follower落后leader不太远,则被认为在“in sync” list里)。

9、每一个consumer实例都属于一个consumer group,每一条消息只会被同一个consumer group里的一个consumer实例消费。(不同consumer group可以同时消费同一条消息)

10、实际上,Kafka的设计理念之一就是同时提供离线处理和实时处理。根据这一特性,可以使用Storm这种实时流处理系统对消息进行实时在线处理,同时使用Hadoop这种批处理系统进行离线处理,还可以同时将数据实时备份到另一个数据中心,只需要保证这三个操作所使用的consumer在不同的consumer group即可。

11、Kafka默认保证At least once,并且允许通过设置producer异步提交来实现At most once

12、在1台机器上跑多个实例对吞吐率的增加不会有太大帮忙,因为网卡已经基本饱和了

13、需要注意的是,replication factor并不会影响consumer的吞吐率测试,因为consumer只会从每个partition的leader读数据,而与replicaiton factor无关。同样,consumer吞吐率也与同步复制还是异步复制无关。 

14、上面的所有测试都基于短消息(payload 100字节),而正如上文所说,短消息对Kafka来说是更难处理的使用方式,可以预期,随着消息长度的增大,records/second会减小,但MB/second会有所提高。下图是records/second与消息长度的关系图。

Kafka的知识点汇总

正如我们所预期的那样,随着消息长度的增加,每秒钟所能发送的消息的数量逐渐减小。但是如果看每秒钟发送的消息的总大小,它会随着消息长度的增加而增加,如下图所示。

Kafka的知识点汇总

从上图可以看出,当消息长度为10字节时,因为要频繁入队,花了太多时间获取锁,CPU成了瓶颈,并不能充分利用带宽。但从100字节开始,我们可以看到带宽的使用逐渐趋于饱和(虽然MB/second还是会随着消息长度的增加而增加,但增加的幅度也越来越小)。

15、Kafka支持对消息集合进行压缩,Producer端可以通过GZIP或Snappy格式对消息集合进行压缩。Producer端进行压缩之后,在Consumer端需进行解压。压缩的好处就是减少传输的数据量,减轻对网络传输的压力,在对大数据处理上,瓶颈往往体现在网络上而不是CPU(压缩和解压会耗掉部分CPU资源)。那么如何区分消息是压缩的还是未压缩的呢,Kafka在消息头部添加了一个 描述压缩属性字节 ,这个字节的后两位表示消息的压缩采用的编码,如果后两位为0,则表示消息未被压缩。

“Kafka的知识点汇总”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


网页标题:Kafka的知识点汇总
浏览路径:http://cdiso.cn/article/ghssdh.html

其他资讯