PyTorch快速搭建神经网络及其保存提取方法详解-创新互联
有时候我们训练了一个模型, 希望保存它下次直接使用,不需要下次再花时间去训练 ,本节我们来讲解一下PyTorch快速搭建神经网络及其保存提取方法详解
一、PyTorch快速搭建神经网络方法
先看实验代码:
import torch import torch.nn.functional as F # 方法1,通过定义一个Net类来建立神经网络 class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) self.predict = torch.nn.Linear(n_hidden, n_output) def forward(self, x): x = F.relu(self.hidden(x)) x = self.predict(x) return x net1 = Net(2, 10, 2) print('方法1:\n', net1) # 方法2 通过torch.nn.Sequential快速建立神经网络结构 net2 = torch.nn.Sequential( torch.nn.Linear(2, 10), torch.nn.ReLU(), torch.nn.Linear(10, 2), ) print('方法2:\n', net2) # 经验证,两种方法构建的神经网络功能相同,结构细节稍有不同 ''''' 方法1: Net ( (hidden): Linear (2 -> 10) (predict): Linear (10 -> 2) ) 方法2: Sequential ( (0): Linear (2 -> 10) (1): ReLU () (2): Linear (10 -> 2) ) '''
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
当前文章:PyTorch快速搭建神经网络及其保存提取方法详解-创新互联
路径分享:http://cdiso.cn/article/eijpj.html