nosql为什么重要,为什么要使用nosql数据库
nosql为什么比sql快
因为索引多。同一条个数据,NOSQL占用空间是一般SQL数据库的3-5倍。
创新互联成立与2013年,是专业互联网技术服务公司,拥有项目网站建设、做网站网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元河南做网站,已为上家服务,为河南各地企业和个人服务,联系电话:13518219792
你可以理解成NOSQL默认开启全字段索引和全文索引什么的。
其实在十万级以下的数据,只要SQL建好索引的情况并不比NOSQL慢。NOSQL主要是用于千万上亿级的时候。
如何选择NoSQL数据库
NoSQL,指的是非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的
SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。
NoSQL(NoSQL
= Not Only SQL
),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数
据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。
从这一新兴技术中选择一款正确的NoSQL数据库是非常具有挑战性的。比一下网建议在选择时考虑以下因素:
并发控制
并
发控制指的是当多个用户同时更新运行时,用于保护数据库完整性的各种技术。并发机制不正确可能导致脏读、幻读和不可重复读等此类问题。并发控制的目的是保
证一个用户的工作不会对另一个用户的工作产生不合理的影响。在某些情况下,这些措施保证了当用户和其他用户一起操作时,所得的结果和她单独操作时的结果是
一样的。在另一些情况下,这表示用户的工作按预定的方式受其他用户的影响。
封锁
就是事务T在对某个数据对象(例如表、记录等)操作之前,先向系统发出请求,对其加锁。加锁后事务T就对该数据对象有了一定的控制,在事务T释放它的锁之前,其它的事务不能更新此数据对象。
封锁是一次只允许一个用户读取或修改的一种机制,是实现并发控制的一个非常重要的技术。
MVCC
Multi-Version Concurrency Control多版本并发控制,维持一个数据的多个版本使读写操作没有冲突。MVCC优化了数据库并发系统,使系统在有大量并发用户时得到最高的性能,并且可以不用关闭服务器就直接进行热备份。
ACID
指
数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久
性(Durability)。一个支持事务(Transaction)的数据库系统,必需要具有这四种特性,否则在事务过程(Transaction
processing)当中无法保证数据的正确性,交易过程极可能达不到交易方的要求。
None
一些系统不提供原子性。
镜像
数据库镜像是DBMS根据DBA的要求,自动把整个数据库或其中的关键数据复制到另一个磁盘上,每当主数据库更新时,DBMS会自动把更新后的数据复制过去,即DBMS自动保证镜像数据与主数据的一致性。
镜像分为同步和异步。
数据存储
指的是数据的物理特性怎样被存储在数据库中。
磁盘 数据被存储在硬盘驱动器里;
GFS或谷歌文件系统是一个由谷歌开发的专有的分布式文件系统;
Hadoop是Apache软件框架,免费许可下支持数据密集型分布式应用程序;
RAM随机存储器;
插件 可以添加外部插件;
Amazon S3通过Web服务接口提供存储;
BDB:BDB
全称是 “Berkeley DB”,它是MySQL具有事务能力的表类型,由Sleepycat
Software开发。BDB表类型提供了MySQL用户长久期盼的功能,即事务控制能力。在任何RDBMS中,事务控制能力都是一种极其重要和宝贵的功
能。事务控制能力使得我们能够确保一组命令确实已经全部执行成功,或者确保当任何一个命令出现错误时所有命令的执行结果均被退回。
实现语言
实现语言会影响数据库的发展速度。典型的NoSQL数据库是用低级语言如C / C + +编写的。另一方面,那些更高层次的语言如Java,使自定义更容易。
实现语言有:C, C++, Erlang, Java, Python
特性
考虑下列哪一个特点对你的数据库是最重要的:
持久性
可用性
一致性
分区容忍性
证书类型
下面这些许可证是一个不同的开放源码许可的形式:
GPL:通用公共许可证
BSD:伯克利软件分发
MPL:Mozilla公共许可证
EPL:Eclipse公共许可证
IDPL:最初的开发者的公共许可证
LGPL:较宽松通用公共许可证
存储类型
存储类型是NoSQL数据库最大的不同,是决定使用哪款数据库的一个首要指标。
关键字:支持get、put和删除操作
按列存储:相对于传统的按行存储,数据集成容易多了
面向文件系统:存储像是JSON或XML这样的结构化文件,很容易就能从面向对象软件中获取数据。
为什么海量数据场景中NoSQL越来越重要
本质是因为:随着互联网的进一步发展与各行业信息化建设进程加快、参与者的增多,人们对软件有了更多更新的要求,需要软件不仅能实现功能,而且要求保证许多人可以共同参与使用,因而软件所需承载的数据量和吞吐量必须达到相应的需求。而目前的关系型数据库在某些方面有一些缺点,导致不能满足需要。
具体则需要对比关系型数据库与Nosql之间的区别可以得出
关系型数据库
关系型数据库把所有的数据都通过行和列的二元表现形式表示出来。
关系型数据库的优势:
1. 保持数据的一致性(事务处理)
2.由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处)
3. 可以进行Join等复杂查询
其中能够保持数据的一致性是关系型数据库的最大优势。
关系型数据库的不足:
不擅长的处理
1. 大量数据的写入处理(这点尤为重要)
2. 为有数据更新的表做索引或表结构(schema)变更
3. 字段不固定时应用
4. 对简单查询需要快速返回结果的处理
--大量数据的写入处理
读写集中在一个数据库上让数据库不堪重负,大部分网站已使用主从复制技术实现读写分离,以提高读写性能和读库的可扩展性。
所以在进行大量数据操作时,会使用数据库主从模式。数据的写入由主数据库负责,数据的读入由从数据库负责,可以比较简单地通过增加从数据库来实现规模化,但是数据的写入却完全没有简单的方法来解决规模化问题。
第一,要想将数据的写入规模化,可以考虑把主数据库从一台增加到两台,作为互相关联复制的二元主数据库使用,确实这样可以把每台主数据库的负荷减少一半,但是更新处理会发生冲突,可能会造成数据的不一致,为了避免这样的问题,需要把对每个表的请求分别分配给合适的主数据库来处理。
第二,可以考虑把数据库分割开来,分别放在不同的数据库服务器上,比如将不同的表放在不同的数据库服务器上,数据库分割可以减少每台数据库服务器上的数据量,以便减少硬盘IO的输入、输出处理,实现内存上的高速处理。但是由于分别存储字不同服务器上的表之间无法进行Join处理,数据库分割的时候就需要预先考虑这些问题,数据库分割之后,如果一定要进行Join处理,就必须要在程序中进行关联,这是非常困难的。
--为有数据更新的表做索引或表结构变更
在使用关系型数据库时,为了加快查询速度需要创建索引,为了增加必要的字段就一定要改变表结构,为了进行这些处理,需要对表进行共享锁定,这期间数据变更、更新、插入、删除等都是无法进行的。如果需要进行一些耗时操作,例如为数据量比较大的表创建索引或是变更其表结构,就需要特别注意,长时间内数据可能无法进行更新。
--字段不固定时的应用
如果字段不固定,利用关系型数据库也是比较困难的,有人会说,需要的时候加个字段就可以了,这样的方法也不是不可以,但在实际运用中每次都进行反复的表结构变更是非常痛苦的。你也可以预先设定大量的预备字段,但这样的话,时间一长很容易弄不清除字段和数据的对应状态,即哪个字段保存有哪些数据。
--对简单查询需要快速返回结果的处理 (这里的“简单”指的是没有复杂的查询条件)
这一点称不上是缺点,但不管怎样,关系型数据库并不擅长对简单的查询快速返回结果,因为关系型数据库是使用专门的sql语言进行数据读取的,它需要对sql与越南进行解析,同时还有对表的锁定和解锁等这样的额外开销,这里并不是说关系型数据库的速度太慢,而只是想告诉大家若希望对简单查询进行高速处理,则没有必要非使用关系型数据库不可。
NoSQL数据库
关系型数据库应用广泛,能进行事务处理和表连接等复杂查询。相对地,NoSQL数据库只应用在特定领域,基本上不进行复杂的处理,但它恰恰弥补了之前所列举的关系型数据库的不足之处。
优点:
易于数据的分散
各个数据之间存在关联是关系型数据库得名的主要原因,为了进行join处理,关系型数据库不得不把数据存储在同一个服务器内,这不利于数据的分散,这也是关系型数据库并不擅长大数据量的写入处理的原因。相反NoSQL数据库原本就不支持Join处理,各个数据都是独立设计的,很容易把数据分散在多个服务器上,故减少了每个服务器上的数据量,即使要处理大量数据的写入,也变得更加容易,数据的读入操作当然也同样容易。
典型的NoSQL数据库
临时性键值存储(memcached、Redis)、永久性键值存储(ROMA、Redis)、面向文档的数据库(MongoDB、CouchDB)、面向列的数据库(Cassandra、HBase)
一、 键值存储
它的数据是以键值的形式存储的,虽然它的速度非常快,但基本上只能通过键的完全一致查询获取数据,根据数据的保存方式可以分为临时性、永久性和两者兼具 三种。
(1)临时性
所谓临时性就是数据有可能丢失,memcached把所有数据都保存在内存中,这样保存和读取的速度非常快,但是当memcached停止时,数据就不存在了。由于数据保存在内存中,所以无法操作超出内存容量的数据,旧数据会丢失。总结来说:
。在内存中保存数据
。可以进行非常快速的保存和读取处理
。数据有可能丢失
(2)永久性
所谓永久性就是数据不会丢失,这里的键值存储是把数据保存在硬盘上,与临时性比起来,由于必然要发生对硬盘的IO操作,所以性能上还是有差距的,但数据不会丢失是它最大的优势。总结来说:
。在硬盘上保存数据
。可以进行非常快速的保存和读取处理(但无法与memcached相比)
。数据不会丢失
(3) 两者兼备
Redis属于这种类型。Redis有些特殊,临时性和永久性兼具。Redis首先把数据保存在内存中,在满足特定条件(默认是 15分钟一次以上,5分钟内10个以上,1分钟内10000个以上的键发生变更)的时候将数据写入到硬盘中,这样既确保了内存中数据的处理速度,又可以通过写入硬盘来保证数据的永久性,这种类型的数据库特别适合处理数组类型的数据。总结来说:
。同时在内存和硬盘上保存数据
。可以进行非常快速的保存和读取处理
。保存在硬盘上的数据不会消失(可以恢复)
。适合于处理数组类型的数据
二、面向文档的数据库
MongoDB、CouchDB属于这种类型,它们属于NoSQL数据库,但与键值存储相异。
(1)不定义表结构
即使不定义表结构,也可以像定义了表结构一样使用,还省去了变更表结构的麻烦。
(2)可以使用复杂的查询条件
跟键值存储不同的是,面向文档的数据库可以通过复杂的查询条件来获取数据,虽然不具备事务处理和Join这些关系型数据库所具有的处理能力,但初次以外的其他处理基本上都能实现。
三、 面向列的数据库
Cassandra、HBae、HyperTable属于这种类型,由于近年来数据量出现爆发性增长,这种类型的NoSQL数据库尤其引入注目。
普通的关系型数据库都是以行为单位来存储数据的,擅长以行为单位的读入处理,比如特定条件数据的获取。因此,关系型数据库也被成为面向行的数据库。相反,面向列的数据库是以列为单位来存储数据的,擅长以列为单位读入数据。
面向列的数据库具有搞扩展性,即使数据增加也不会降低相应的处理速度(特别是写入速度),所以它主要应用于需要处理大量数据的情况。另外,把它作为批处理程序的存储器来对大量数据进行更新也是非常有用的。但由于面向列的数据库跟现行数据库存储的思维方式有很大不同,故应用起来十分困难。
总结:关系型数据库与NoSQL数据库并非对立而是互补的关系,即通常情况下使用关系型数据库,在适合使用NoSQL的时候使用NoSQL数据库,让NoSQL数据库对关系型数据库的不足进行弥补。
衡量数据库性能的重要指标
具体来说,本文包括以下内容:
事务
查询性能
用户和查询冲突
容量
配置
NoSQL 数据库
事务
事务可以观察真实用户的行为:能够在应用交互时捕获实时性能。众所周知,测量事务的性能包括获取整个事务的响应时间和组成事务的各个部分的响应时间。通常我们可以用这些响应时间与满足事务需求的基线对比,来确定当前事务是否处于正常状态。
如果你只想衡量应用的某个方面,那么可以评估事务的行为。所以,尽管容器指标能够提供更丰富的信息,并且帮助你决定何时对当前环境进行自动测量,但你的事务就足以确定应用性能。无需向应用程序服务器获取 CPU 的使用情况,你更应该关心用户是否完成了事务,以及该事务是否得到了优化。
补充一个小知识点,事务是由入口点决定的,通过该入口点可以启动事务与应用进行交互。
一旦定义了事务,会在整个应用生态系统中对其性能进行测量,并将每个事务与基线进行比对。例如,我们可能会决定当事务的响应时间与基线相比,一旦慢于平均响应时间的两个标准差是否就应该判定为异常,如图1所示。
图1-基于基线评估当前事务响应时间
用于评估事务的基线与正在进行的事务活动在时间上是一致的,但事务会由每个事务执行来完善。例如,当你选定一个基线,在当前事务结束之后,将事务与平均响应时间按每天的小时数和每周的天数进行对比,所有在那段时间内执行的事务都将会被纳入下周的基线中。通过这种机制,应用程序可以随时间而变化,而无需每次都重建原始基线;你可以将其看作是一个随时间移动的窗口。
总之,事务最能反映用户体验的测量方法,所以也是衡量性能状况最重要的指标。
查询性能
最容易检测到查询性能是否正常的指标就是查询本身。由查询引起的问题可能会导致时间太长而无法识别所需数据或返回数据。所以不妨在查询中排查以下问题。
1. 选择过多冗余数据
编写查询语句来返回适当的数据是远远不够的,很可能你的查询语句会返回太多列,从而导致选择行和检索数据变得异常缓慢。所以,最好是列出所需的列,而不是直接用 SELECT*。当需要在特定字段中查询时,该计划可能会确定一个覆盖索引从而加快结果返回。覆盖索引通常会包含查询中使用的所有字段。这意味着数据库可以仅从索引中产生结果,而不需要通过底层表来构建。
另外,列出结果中所需的列不仅可以减少传输的数据,还能进一步提高性能。
2. 表之间的低效联接
联接会导致数据库将多组数据带到内存中进行比较,这会产生多个数据库读取和大量 CPU。根据表的索引,联接还可能需要扫描两个表的所有行。如果写不好两个大型表之间的联接,就需要对每个表进行完整扫描,这样的计算量将会非常大。其他会拖慢联接的因素包括联接列之间存在不同的数据类型、需要转换或加入包含 LIKE 的条件,这样就会阻止使用索引。另外,还需注意避免使用全外联接;在恰当的时候使用内部联接只返回所需数据。
3. 索引过多或过少
如果查询优化没有可用的索引时,数据库会重新扫描表来产生查询结果,这个过程会生成大量的磁盘输入/输出(I/O)。适当的索引可以减少排序结果的需要。虽然非唯一值的索引在生成结果时,不能像唯一索引那样方便。如果键越大,索引也会变大,并通过它们创建更多的磁盘 I/O。大多数索引是为了提高数据检索的性能,但也需要明白索引本身也会影响数据的插入和更新,因为所有相关联的指标都必须更新。
4. 太多的SQL导致争用解析资源
任何 SQL 查询在执行之前都必须被解析,在生成执行计划之前需要对语法和权限进行检查。由于解析非常耗时,数据库会保存已解析的 SQL 来重复利用,从而减少解析的耗时。因为 WHERE 语句不同,所以使用文本值的查询语句不能被共享。这将导致每个查询都会被解析并添加到共享池中,由于池的空间有限,一些已保存的查询会被舍弃。当这些查询再次出现时,则需要重新解析。
用户和查询冲突
数据库支持多用户,但多用户活动也可能造成冲突。
1. 由慢查询导致的页/行锁定
为了确保查询产生精确的结果,数据库必须锁定表以防止在运行读取查询时再发生其他的插入和更新行为。如果报告或查询相当缓慢,需要修改值的用户可能需要等待至更新完成。锁提示能帮助数据库使用最小破坏性的锁。从事务数据库中分离报表也是一种可靠的解决方法。
2. 事务锁和死锁
当两个事务被阻塞时会出现死锁,因为每一个都需要使用被另一个占用的资源。当出现一个普通锁时,事务会被阻塞直到资源被释放。但却没有解决死锁的方案。数据库会监控死锁并选择终止其中一个事务,释放资源并允许该事务继续进行,而另一个事务则回滚。
3. 批处理操作造成资源争夺
批处理过程通常会执行批量操作,如大量的数据加载或生成复杂的分析报告。这些操作是资源密集型的,但可能影响在线用户的访问应用的性能。针对此问题最好的解决办法是确保批处理在系统使用率较低时运行,比如晚上,或用单独的数据库进行事务处理和分析报告。
容量
并不是所有的数据库性能问题都是数据库问题。有些问题也是硬件不合适造成的。
1. CPU 不足或 CPU 速度太慢
更多 CPU 可以分担服务器负载,进一步提高性能。数据库的性能不仅是数据库的原因,还受到服务器上运行其他进程的影响。因此,对数据库负载及使用进行审查也是必不可少的。由于 CPU 的利用率时时在变,在低使用率、平均使用率和峰值使用率的时间段分别检查该指标可以更好地评估增加额外的 CPU 资源是否有益。
2. IOPS 不足的慢磁盘
磁盘性能通常以每秒输入/输出操作(IOPS)来计。结合 I/O 大小,该指标可以衡量每秒的磁盘吞吐量是多少兆。同时,吞吐量也受磁盘的延迟影响,比如需要多久才能完成请求,这些指标主要是针对磁盘存储技术而言。传统的硬盘驱动器(HDD)有一个旋转磁盘,通常比固态硬盘(SSD)或闪存更慢。直到近期,SSD 虽然仍比 HDD 贵,但成本已经降了下来,所以在市场上也更具竞争力。
3. 全部或错误配置的磁盘
众所周知,数据库会被大量磁盘访问,所以不正确配置的磁盘可能带来严重的性能缺陷。磁盘应该适当分区,将系统数据目录和用户数据日志分开。高度活跃的表应该区分以避免争用,通过在不同磁盘上存放数据库和索引增加并行放置,但不要将操作系统和数据库交换空间放置在同一磁盘上。
4. 内存不足
有限或不恰当的物理内存分配会影响数据库性能。通常我们认为可用的内存更多,性能就越好。监控分页和交换,在多个非繁忙磁盘中建立多页面空间,进一步确保分页空间分配足够满足数据库要求;每个数据库供应商也可以在这个问题上提供指导。
5. 网速慢
网络速度会影响到如何快速检索数据并返回给终端用户或调用过程。使用宽带连接到远程数据库。在某些情况下,选择 TCP/IP 协议而不是命名管道可显著提高数据库性能。
配置
每个数据库都需设置大量的配置项。通常情况下,默认值可能不足以满足数据库所需的性能。所以,检查所有的参数设置,包括以下问题。
1. 缓冲区缓存太小
通过将数据存储在内核内存,缓冲区缓存可以进一步提高性能同时减少磁盘 I/O。当缓存太小时,缓存中的数据会更频繁地刷新。如果它再次被请求,就必须从磁盘重读。除了磁盘读取缓慢之外,还给 I/O 设备增添了负担从而成为瓶颈。除了给缓冲区缓存分配足够的空间,调优 SQL 查询可以帮助其更有效地利用缓冲区缓存。
2. 没有查询缓存
查询缓存会存储数据库查询和结果集。当执行相同的查询时,数据会在缓存中被迅速检索,而不需要再次执行查询。数据会更新失效结果,所以查询缓存是唯一有效的静态数据。但在某些情况下,查询缓存却可能成为性能瓶颈。比如当锁定为更新时,巨大的缓存可能导致争用冲突。
3. 磁盘上临时表创建导致的 I/O 争用
在执行特定的查询操作时,数据库需要创建临时表,如执行一个 GROUP BY 子句。如果可能,在内存中创建临时表。但是,在某些情况下,在内存中创建临时表并不可行,比如当数据包含 BLOB 或 TEXT 对象时。在这些情况下,会在磁盘上创建临时表。大量的磁盘 I / O 都需要创建临时表、填充记录、从表中选择所需数据并在查询完成后舍弃。为了避免影响性能,临时数据库应该从主数据库中分离出来。重写查询还可以通过创建派生表来减少对临时表的需求。使用派生表直接从另一个 SELECT 语句的结果中选择,允许将数据加到内存中而不是当前磁盘上。
NoSQL 数据库
NoSQL 的优势在于它处理大数据的能力非常迅速。但是在实际使用中,也应该综合参考 NoSQL 的缺点,从而决定是否适合你的用例场景。这就是为什么NoSQL通常被理解为 「不仅仅是 SQL」,说明了 NoSQL 并不总是正确的解决方案,也没必要完全取代 SQL,以下分别列举出五大主要原因。
1. 挑剔事务
难以保持 NoSQL 条目的一致性。当访问结构化数据时,它并不能完全确保同一时间对不同表的更改都生效。如果某个过程发生崩溃,表可能会不一致。一致事务的典型代表是复式记账法。相应的信贷必须平衡每个借方,反之亦然。如果双方数据不一致则不能输入。NoSQL 则可能无法保证「收支平衡」。
2. 复杂数据库
NoSQL 的支持者往往以高效代码、简单性和 NoSQL 的速度为傲。当数据库任务很简单时,所有这些因素都是优势。但当数据库变得复杂,NoSQL 会开始分解。此时,SQL 则比 NoSQL 更好地处理复杂需求,因为 SQL 已经成熟,有符合行业标准的接口。而每个 NoSQL 设置都有一个唯一的接口。
3. 一致联接
当执行 SQL 的联接时,由于系统必须从不同的表中提取数据进行键对齐,所以有一个巨大的开销。而 NoSQL 似乎是一个空想,因为缺乏联接功能。所有的数据都在同一个表的一个地方。当检索数据时,它会同时提取所有的键值对。问题在于这会创建同一数据的多个副本。这些副本也必须更新,而这种情况下,NoSQL 没有功能来确保更新。
4. Schema设计的灵活性
由于 NoSQL 不需要 schema,所以在某些情况下也是独一无二的。在以前的数据库模型中,程序员必须考虑所有需要的列能够扩展,能够适应每行的数据条目。在 NoSQL 下,条目可以有多种字符串或者完全没有。这种灵活性允许程序员迅速增加数据。但是,也可能存在问题,比如当有多个团体在同一项目上工作时,或者新的开发团队接手一个项目时。开发人员能够自由地修改数据库,也可能会不断实现各种各样的密钥对。
5. 资源密集型
NoSQL 数据库通常比关系数据库更加资源密集。他们需要更多的 CPU 储备和 RAM 分配。出于这个原因,大多数共享主机公司都不提供 NoSQL。你必须注册一个 VPS 或运行自己的专用服务器。另一方面,SQL 主要是在服务器上运行。初期的工作都很顺利,但随着数据库需求的增加,硬件必须扩大。单个大型服务器比多个小型服务器昂贵得多,价格呈指数增长。所以在这种企业计算场景下,使用 NoSQL 更为划算,例如那些由谷歌和 Facebook 使用的服务器。
什么是NoSQL数据库?
2. 什么是NoSQL?
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,
泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。
(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 关系型数据库与NoSQL的区别?
3.1 RDBMS
高度组织化结构化数据
结构化查询语言(SQL)
数据和关系都存储在单独的表中。
数据操纵语言,数据定义语言
严格的一致性
基础事务
ACID
关系型数据库遵循ACID规则
事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:
A (Atomicity) 原子性
原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。
C (Consistency) 一致性
一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。
I (Isolation) 独立性
所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。
3.2 NoSQL
代表着不仅仅是SQL
没有声明性查询语言
没有预定义的模式
键 - 值对存储,列存储,文档存储,图形数据库
最终一致性,而非ACID属性
非结构化和不可预知的数据
CAP定理
高性能,高可用性和可伸缩性
分布式数据库中的CAP原理(了解)
CAP定理:
Consistency(一致性), 数据一致更新,所有数据变动都是同步的
Availability(可用性), 好的响应性能
Partition tolerance(分区容错性) 可靠性
P: 系统中任意信息的丢失或失败不会影响系统的继续运作。
定理:任何分布式系统只可同时满足二点,没法三者兼顾。
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,
因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:
CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。
AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。
而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。
所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。
说明:C:强一致性 A:高可用性 P:分布式容忍性
举例:
CA:传统Oracle数据库
AP:大多数网站架构的选择
CP:Redis、Mongodb
注意:分布式架构的时候必须做出取舍。
一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。
因此牺牲C换取P,这是目前分布式数据库产品的方向。
4. 当下NoSQL的经典应用
当下的应用是 SQL 与 NoSQL 一起使用的。
代表项目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。
难点:
数据类型多样性。
数据源多样性和变化重构。
数据源改造而服务平台不需要大面积重构。
newsql和nosql的区别和联系
在大数据时代,“多种架构支持多类应用”成为数据库行业应对大数据的基本思路,数据库行业出现互为补充的三大阵营,适用于事务处理应用的OldSQL、适用于数据分析应用的NewSQL和适用于互联网应用的NoSQL。但在一些复杂的应用场景中,单一数据库架构都不能完全满足应用场景对海量结构化和非结构化数据的存储管理、复杂分析、关联查询、实时性处理和控制建设成本等多方面的需要,因此不同架构数据库混合部署应用成为满足复杂应用的必然选择。不同架构数据库混合使用的模式可以概括为:OldSQL+NewSQL、OldSQL+NoSQL、NewSQL+NoSQL三种主要模式。下面通过三个案例对不同架构数据库的混合应用部署进行介绍。
OldSQL+NewSQL 在数据中心类应用中混合部署
采用OldSQL+NewSQL模式构建数据中心,在充分发挥OldSQL数据库的事务处理能力的同时,借助NewSQL在实时性、复杂分析、即席查询等方面的独特优势,以及面对海量数据时较强的扩展能力,满足数据中心对当前“热”数据事务型处理和海量历史“冷”数据分析两方面的需求。OldSQL+NewSQL模式在数据中心类应用中的互补作用体现在,OldSQL弥补了NewSQL不适合事务处理的不足,NewSQL弥补了OldSQL在海量数据存储能力和处理性能方面的缺陷。
商业银行数据中心采用OldSQL+NewSQL混合部署方式搭建,OldSQL数据库满足各业务系统数据的归档备份和事务型应用,NewSQL MPP数据库集群对即席查询、多维分析等应用提供高性能支持,并且通过MPP集群架构实现应对海量数据存储的扩展能力。
商业银行数据中心存储架构
与传统的OldSQL模式相比,商业银行数据中心采用OldSQL+NewSQL混合搭建模式,数据加载性能提升3倍以上,即席查询和统计分析性能提升6倍以上。NewSQL MPP的高可扩展性能够应对新的业务需求,可随着数据量的增长采用集群方式构建存储容量更大的数据中心。
OldSQL+NoSQL 在互联网大数据应用中混合部署
在互联网大数据应用中采用OldSQL+NoSQL混合模式,能够很好的解决互联网大数据应用对海量结构化和非结构化数据进行存储和快速处理的需求。在诸如大型电子商务平台、大型SNS平台等互联网大数据应用场景中,OldSQL在应用中负责高价值密度结构化数据的存储和事务型处理,NoSQL在应用中负责存储和处理海量非结构化的数据和低价值密度结构化数据。OldSQL+NoSQL模式在互联网大数据应用中的互补作用体现在,OldSQL弥补了NoSQL在ACID特性和复杂关联运算方面的不足,NoSQL弥补了OldSQL在海量数据存储和非结构化数据处理方面的缺陷。
数据魔方是淘宝网的一款数据产品,主要提供行业数据分析、店铺数据分析。淘宝数据产品在存储层采用OldSQL+NoSQL混合模式,由基于MySQL的分布式关系型数据库集群MyFOX和基于HBase的NoSQL存储集群Prom组成。由于OldSQL强大的语义和关系表达能力,在应用中仍然占据着重要地位,目前存储在MyFOX中的统计结果数据已经达到10TB,占据着数据魔方总数据量的95%以上。另一方面,NoSQL作为SQL的有益补充,解决了OldSQL数据库无法解决的全属性选择器等问题。
淘宝海量数据产品技术架构
基于OldSQL+NoSQL混合架构的特点,数据魔方目前已经能够提供压缩前80TB的数据存储空间,支持每天4000万的查询请求,平均响应时间在28毫秒,足以满足未来一段时间内的业务增长需求。
NewSQL+NoSQL 在行业大数据应用中混合部署
行业大数据与互联网大数据的区别在于行业大数据的价值密度更高,并且对结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等都比互联网大数据有更高的要求。行业大数据应用场景主要是分析类应用,如:电信、金融、政务、能源等行业的决策辅助、预测预警、统计分析、经营分析等。
在行业大数据应用中采用NewSQL+NoSQL混合模式,充分利用NewSQL在结构化数据分析处理方面的优势,以及NoSQL在非结构数据处理方面的优势,实现NewSQL与NoSQL的功能互补,解决行业大数据应用对高价值结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等要求,以及对海量非结构化数据存储和精确查询的要求。在应用中,NewSQL承担高价值密度结构化数据的存储和分析处理工作,NoSQL承担存储和处理海量非结构化数据和不需要关联分析、Ad-hoc查询较少的低价值密度结构化数据的工作。
当前电信运营商在集中化BI系统建设过程中面临着数据规模大、数据处理类型多等问题,并且需要应对大量的固定应用,以及占统计总数80%以上的突发性临时统计(ad-hoc)需求。在集中化BI系统的建设中采用NewSQL+NoSQL混搭的模式,充分利用NewSQL在复杂分析、即席查询等方面处理性能的优势,及NoSQL在非结构化数据处理和海量数据存储方面的优势,实现高效低成本。
集中化BI系统数据存储架构
集中化BI系统按照数据类型和处理方式的不同,将结构化数据和非结构化数据分别存储在不同的系统中:非结构化数据在Hadoop平台上存储与处理;结构化、不需要关联分析、Ad-hoc查询较少的数据保存在NoSQL数据库或Hadoop平台;结构化、需要关联分析或经常ad-hoc查询的数据,保存在NewSQL MPP数据库中,短期高价值数据放在高性能平台,中长期放在低成本产品中。
结语
当前信息化应用的多样性、复杂性,以及三种数据库架构各自所具有的优势和局限性,造成任何一种架构的数据库都不能完全满足应用需求,因此不同架构数据库混合使用,从而弥补其他架构的不足成为必然选择。根据应用场景采用不同架构数据库进行组合搭配,充分发挥每种架构数据库的特点和优势,并且与其他架构数据库形成互补,完全涵盖应用需求,保证数据资源的最优化利用,将成为未来一段时期内信息化应用主要采用的解决方式。
目前在国内市场上,OldSQL主要为Oracle、IBM等国外数据库厂商所垄断,达梦、金仓等国产厂商仍处于追赶状态;南大通用凭借国产新型数据库GBase 8a异军突起,与EMC的Greenplum和HP的Vertica跻身NewSQL市场三强;NoSQL方面用户则大多采用Hadoop开源方案。
本文名称:nosql为什么重要,为什么要使用nosql数据库
本文来源:http://cdiso.cn/article/dsscicg.html