pytorch如何在sequential中使用view来reshape-创新互联
这篇文章主要为大家展示了“pytorch如何在sequential中使用view来reshape”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“pytorch如何在sequential中使用view来reshape”这篇文章吧。
十年的柯城网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。营销型网站建设的优势是能够根据用户设备显示端的尺寸不同,自动调整柯城建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“柯城网站设计”,“柯城网站推广”以来,每个客户项目都认真落实执行。pytorch中view是tensor方法,然而在sequential中包装的是nn.module的子类,
因此需要自己定义一个方法:
import torch.nn as nn class Reshape(nn.Module): def __init__(self, *args): super(Reshape, self).__init__() self.shape = args def forward(self, x): # 如果数据集最后一个batch样本数量小于定义的batch_batch大小,会出现mismatch问题。可以自己修改下,如只传入后面的shape,然后通过x.szie(0),来输入。 return x.view(self.shape)
class Reshape(nn.Module): def __init__(self, *args): super(Reshape, self).__init__() self.shape = args def forward(self, x): return x.view((x.size(0),)+self.shape)
以上是“pytorch如何在sequential中使用view来reshape”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
本文题目:pytorch如何在sequential中使用view来reshape-创新互联
文章源于:http://cdiso.cn/article/dsjdji.html