mysql乐观锁怎么实现,mysql如何实现悲观锁
深入理解MySQL数据库各种锁(总结)
MyISAM和InnoDB存储引擎使用的锁:
创新互联公司主要从事成都网站制作、网站设计、网页设计、企业做网站、公司建网站等业务。立足成都服务敦化,十余年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18982081108
封锁粒度小:
由于InnoDB存储引擎支持的是行级别的锁,因此意向锁(因为意向锁是表锁)其实不会阻塞除全表扫以外的任何请求。故表级意向锁与行级锁的兼容性如下所示
参考
参考
行锁的三种算法:
这条语句阻止其他事务插入10和20之间的数字,无论这个数字是否存在。 间隙可以跨越0个,单个或多个索引值。
共享锁:
排他锁:
乐观锁:总是假设最好的情况,每次去拿数据的时候都认为别人不会修改(天真), 操作数据时不会上锁 ,但是 更新时会判断在此期间有没有别的事务更新这个数据,若被更新过,则失败重试 ;适用于读多写少的场景。
乐观锁的实现方式 有:
关闭自动提交后,我们需要手动开启事务。
上述就实现了悲观锁,悲观锁就是悲观主义者,它会认为我们在事务A中操作数据1的时候,一定会有事务B来修改数据1,所以,在第2步我们将数据查询出来后直接加上排它锁(X)锁,防止别的事务来修改事务1,直到我们commit后,才释放了排它锁。
Mysql中锁的类型有哪些呢?
mysql锁分为共享锁和排他锁,也叫做读锁和写锁。
读锁是共享的,可以通过lock in share mode实现,这时候只能读不能写。
写锁是排他的,它会阻塞其他的写锁和读锁。从颗粒度来区分,可以分为表锁和⾏锁两种。
表锁会锁定整张表并且阻塞其他⽤户对该表的所有读写操作,⽐如alter修改表结构的时候会锁表。
⾏锁⼜可以分为乐观锁和悲观锁,悲观锁可以通过for update实现,乐观锁则通过版本号实现。
mysql中的乐观锁和悲观锁怎么用
关于mysql中的乐观锁和悲观锁面试的时候被问到的概率还是比较大的。
mysql的悲观锁:
其实理解起来非常简单,当数据被外界修改持保守态度,包括自身系统当前的其他事务,以及来自外部系统的事务处理,因此,在整个数据处理过程中,将数据处于锁定状态。悲观锁的实现,往往依靠数据库提供的锁机制,但是也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在自身系统中实现了加锁机制,也无法保证外部系统不会修改数据。
来点实际的,当我们使用悲观锁的时候我们首先必须关闭mysql数据库的自动提交属性,因为MySQL默认使用autocommit模式,也就是说,当你执行一个更新操作后,MySQL会立刻将结果进行提交。
关闭命令为:set autocommit=0;
悲观锁可以使用select…for update实现,在执行的时候会锁定数据,虽然会锁定数据,但是不影响其他事务的普通查询使用。此处说普通查询就是平时我们用的:select * from table 语句。在我们使用悲观锁的时候事务中的语句例如:
//开始事务
begin;/begin work;/start transaction; (三选一)
//查询信息
select * from order where id=1 for update;
//修改信息
update order set name='names';
//提交事务
commit;/commit work;(二选一)
此处的查询语句for update关键字,在事务中只有SELECT ... FOR UPDATE 或LOCK IN SHARE MODE 同一条数据时会等待其它事务结束后才执行,一般的SELECT查询则不受影响。
执行事务时关键字select…for update会锁定数据,防止其他事务更改数据。但是锁定数据也是有规则的。
查询条件与锁定范围:
1、具体的主键值为查询条件
比如查询条件为主键ID=1等等,如果此条数据存在,则锁定当前行数据,如果不存在,则不锁定。
2、不具体的主键值为查询条件
比如查询条件为主键ID1等等,此时会锁定整张数据表。
3、查询条件中无主键
会锁定整张数据表。
4、如果查询条件中使用了索引为查询条件
明确指定索引并且查到,则锁定整条数据。如果找不到指定索引数据,则不加锁。
悲观锁的确保了数据的安全性,在数据被操作的时候锁定数据不被访问,但是这样会带来很大的性能问题。因此悲观锁在实际开发中使用是相对比较少的。
mysql的乐观锁:
相对悲观锁而言,乐观锁假设数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会对数据的冲突与否进行检测,如果发现冲突,则让返回用户错误的信息,让用户决定如何去做。
一般来说,实现乐观锁的方法是在数据表中增加一个version字段,每当数据更新的时候这个字段执行加1操作。这样当数据更改的时候,另外一个事务访问此条数据进行更改的话就会操作失败,从而避免了并发操作错误。当然,还可以将version字段改为时间戳,不过原理都是一样的。
例如有表student,字段:
id,name,version
1 a 1
当事务一进行更新操作:update student set name='ygz' where id = #{id} and version = #{version};
此时操作完后数据会变为id = 1,name = ygz,version = 2,当另外一个事务二同样执行更新操作的时候,却发现version != 1,此时事务二就会操作失败,从而保证了数据的正确性。
悲观锁和乐观锁都是要根据具体业务来选择使用,本文仅作简单介绍。
mysql 核心内容-上
1、SQL语句执行流程
MySQL大体上可分为Server层和存储引擎层两部分。
Server层:
连接器:TCP握手后服务器来验证登陆用户身份,A用户创建连接后,管理员对A用户权限修改了也不会影响到已经创建的链接权限,必须重新登陆。
查询缓存:查询后的结果存储位置,MySQL8.0版本以后已经取消,因为查询缓存失效太频繁,得不偿失。
分析器:根据语法规则,判断你输入的这个SQL语句是否满足MySQL语法。
优化器:多种执行策略可实现目标,系统自动选择最优进行执行。
执行器:判断是否有权限,将最终任务提交到存储引擎。
存储引擎层
负责数据的存储和提取。其架构模式是插件式的,支持InnoDB、MyISAM、Memory等多个存储引擎。现在最常用的存储引擎是InnoDB,它从MySQL 5.5.5版本开始成为了默认存储引擎(经常用的也是这个)。
SQL执行顺序
2、BinLog、RedoLog、UndoLog
BinLog
BinLog是记录所有数据库表结构变更(例如create、alter table)以及表数据修改(insert、update、delete)的二进制日志,主从数据库同步用到的都是BinLog文件。BinLog日志文件有三种模式。
STATEMENT 模式
内容:binlog 记录可能引起数据变更的 sql 语句
优势:该模式下,因为没有记录实际的数据,所以日志量很少 IO 都消耗很低,性能是最优的
劣势:但有些操作并不是确定的,比如 uuid() 函数会随机产生唯一标识,当依赖 binlog 回放时,该操作生成的数据与原数据必然是不同的,此时可能造成无法预料的后果。
ROW 模式
内容:在该模式下,binlog 会记录每次操作的源数据与修改后的目标数据,StreamSets就要求该模式。
优势:可以绝对精准的还原,从而保证了数据的安全与可靠,并且复制和数据恢复过程可以是并发进行的
劣势:缺点在于 binlog 体积会非常大,同时,对于修改记录多、字段长度大的操作来说,记录时性能消耗会很严重。阅读的时候也需要特殊指令来进行读取数据。
MIXED 模式
内容:是对上述STATEMENT 跟 ROW 两种模式的混合使用。
细节:对于绝大部分操作,都是使用 STATEMENT 来进行 binlog 没有记录,只有以下操作使用 ROW 来实现:表的存储引擎为 NDB,使用了uuid() 等不确定函数,使用了 insert delay 语句,使用了临时表
主从同步流程:
1、主节点必须启用二进制日志,记录任何修改了数据库数据的事件。
2、从节点开启一个线程(I/O Thread)把自己扮演成 mysql 的客户端,通过 mysql 协议,请求主节点的二进制日志文件中的事件 。
3、主节点启动一个线程(dump Thread),检查自己二进制日志中的事件,跟对方请求的位置对比,如果不带请求位置参数,则主节点就会从第一个日志文件中的第一个事件一个一个发送给从节点。
4、从节点接收到主节点发送过来的数据把它放置到中继日志(Relay log)文件中。并记录该次请求到主节点的具体哪一个二进制日志文件内部的哪一个位置(主节点中的二进制文件会有多个)。
5、从节点启动另外一个线程(sql Thread ),把 Relay log 中的事件读取出来,并在本地再执行一次。
mysql默认的复制方式是异步的,并且复制的时候是有并行复制能力的。主库把日志发送给从库后不管了,这样会产生一个问题就是假设主库挂了,从库处理失败了,这时候从库升为主库后,日志就丢失了。由此产生两个概念。
全同步复制
主库写入binlog后强制同步日志到从库,所有的从库都执行完成后才返回给客户端,但是很显然这个方式的话性能会受到严重影响。
半同步复制
半同步复制的逻辑是这样,从库写入日志成功后返回ACK确认给主库,主库收到至少一个从库的确认就认为写操作完成。
还可以延伸到由于主从配置不一样、主库大事务、从库压力过大、网络震荡等造成主备延迟,如何避免这个问题?主备切换的时候用可靠性优先原则还是可用性优先原则?如何判断主库Crash了?互为主备的情况下如何避免主备循环复制?被删库跑路了如何正确恢复?( o )… 感觉越来越扯到DBA的活儿上去了。
RedoLog
可以先通过下面demo理解:
饭点记账可以把账单写在账本上也可以写在粉板上。有人赊账或者还账的话,一般有两种做法:
1、直接把账本翻出来,把这次赊的账加上去或者扣除掉。
2、先在粉板上记下这次的账,等打烊以后再把账本翻出来核算。
生意忙时选后者,因为前者太麻烦了。得在密密麻麻的记录中找到这个人的赊账总额信息,找到之后再拿出算盘计算,最后再将结果写回到账本上。
同样在MySQL中如果每一次的更新操作都需要写进磁盘,然后磁盘也要找到对应的那条记录,然后再更新,整个过程IO成本、查找成本都很高。而粉板和账本配合的整个过程就是MySQL用到的是Write-Ahead Logging 技术,它的关键点就是先写日志,再写磁盘。此时账本 = BinLog,粉板 = RedoLog。
1、 记录更新时,InnoDB引擎就会先把记录写到RedoLog(粉板)里面,并更新内存。同时,InnoDB引擎会在空闲时将这个操作记录更新到磁盘里面。
2、 如果更新太多RedoLog处理不了的时候,需先将RedoLog部分数据写到磁盘,然后擦除RedoLog部分数据。RedoLog类似转盘。
RedoLog有write pos 跟checkpoint
write pos :是当前记录的位置,一边写一边后移,写到第3号文件末尾后就回到0号文件开头。
check point:是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件。
write pos和check point之间的是粉板上还空着的部分,可以用来记录新的操作。如果write pos追上checkpoint,表示粉板满了,这时候不能再执行新的更新,得停下来先擦掉一些记录,把checkpoint推进一下。
有了redo log,InnoDB就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为crash-safe。 redolog两阶段提交:为了让binlog跟redolog两份日志之间的逻辑一致。提交流程大致如下:
1 prepare阶段 -- 2 写binlog -- 3 commit
当在2之前崩溃时,重启恢复后发现没有commit,回滚。备份恢复:没有binlog 。一致
当在3之前崩溃时,重启恢复发现虽没有commit,但满足prepare和binlog完整,所以重启后会自动commit。备份:有binlog. 一致
binlog跟redolog区别:
redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。
redo log是物理日志,记录的是在某个数据页上做了什么修改;binlog是逻辑日志,记录的是这个语句的原始逻辑,比如给ID=2这一行的c字段加1。
redo log是循环写的,空间固定会用完;binlog是可以追加写入的。追加写是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。
UndoLog
UndoLog 一般是逻辑日志,主要分为两种:
insert undo log
代表事务在insert新记录时产生的undo log, 只在事务回滚时需要,并且在事务提交后可以被立即丢弃
update undo log
事务在进行update或delete时产生的undo log; 不仅在事务回滚时需要,在快照读时也需要;所以不能随便删除,只有在快速读或事务回滚不涉及该日志时,对应的日志才会被purge线程统一清除
3、MySQL中的索引
索引的常见模型有哈希表、有序数组和搜索树。
哈希表:一种以KV存储数据的结构,只适合等值查询,不适合范围查询。
有序数组:只适用于静态存储引擎,涉及到插入的时候比较麻烦。可以参考Java中的ArrayList。
搜索树:按照数据结构中的二叉树来存储数据,不过此时是N叉树(B+树)。广泛应用在存储引擎层中。
B+树比B树优势在于:
B+ 树非叶子节点存储的只是索引,可以存储的更多。B+树比B树更加矮胖,IO次数更少。
B+ 树叶子节点前后管理,更加方便范围查询。同时结果都在叶子节点,查询效率稳定。
B+树中更有利于对数据扫描,可以避免B树的回溯扫描。
索引的优点:
1、唯一索引可以保证每一行数据的唯一性
2、提高查询速度
3、加速表与表的连接
4、显著的减少查询中分组和排序的时间
5、通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
索引的缺点:
1、创建跟维护都需要耗时
2、创建索引时,需要对表加锁,在锁表的同时,可能会影响到其他的数据操作
3、 索引需要磁盘的空间进行存储,磁盘占用也很快。
4、当对表中的数据进行CRUD的时,也会触发索引的维护,而维护索引需要时间,可能会降低数据操作性能
索引设计的原则不应该:
1、索引不是越多越好。索引太多,维护索引需要时间跟空间。
2、 频繁更新的数据,不宜建索引。
3、数据量小的表没必要建立索引。
应该:
1、重复率小的列建议生成索引。因为重复数据少,索引树查询更有效率,等价基数越大越好。
2、数据具有唯一性,建议生成唯一性索引。在数据库的层面,保证数据正确性
3、频繁group by、order by的列建议生成索引。可以大幅提高分组和排序效率
4、经常用于查询条件的字段建议生成索引。通过索引查询,速度更快
索引失效的场景
1、模糊搜索:左模糊或全模糊都会导致索引失效,比如'%a'和'%a%'。但是右模糊是可以利用索引的,比如'a%' 。
2、隐式类型转换:比如select * from t where name = xxx , name是字符串类型,但是没有加引号,所以是由MySQL隐式转换的,所以会让索引失效 3、当语句中带有or的时候:比如select * from t where name=‘sw’ or age=14
4、不符合联合索引的最左前缀匹配:(A,B,C)的联合索引,你只where了C或B或只有B,C
关于索引的知识点:
主键索引:主键索引的叶子节点存的是整行数据信息。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。主键自增是无法保证完全自增的哦,遇到唯一键冲突、事务回滚等都可能导致不连续。
唯一索引:以唯一列生成的索引,该列不允许有重复值,但允许有空值(NULL)
普通索引跟唯一索引查询性能:InnoDB的数据是按数据页为单位来读写的,默认每页16KB,因此这两种索引查询数据性能差别微乎其微。
change buffer:普通索引用在更新过程的加速,更新的字段如果在缓存中,如果是普通索引则直接更新即可。如果是唯一索引需要将所有数据读入内存来确保不违背唯一性,所以尽量用普通索引。
非主键索引:非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引(secondary index)
回表:先通过数据库索引扫描出数据所在的行,再通过行主键id取出索引中未提供的数据,即基于非主键索引的查询需要多扫描一棵索引树。
覆盖索引:如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为覆盖索引。
联合索引:相对单列索引,组合索引是用多个列组合构建的索引,一次性最多联合16个。
最左前缀原则:对多个字段同时建立的组合索引(有顺序,ABC,ACB是完全不同的两种联合索引) 以联合索引(a,b,c)为例,建立这样的索引相当于建立了索引a、ab、abc三个索引。另外组合索引实际还是一个索引,并非真的创建了多个索引,只是产生的效果等价于产生多个索引。
索引下推:MySQL 5.6引入了索引下推优化,可以在索引遍历过程中,对索引中包含的字段先做判断,过滤掉不符合条件的记录,减少回表字数。
索引维护:B+树为了维护索引有序性涉及到页分裂跟页合并。增删数据时需考虑页空间利用率。
自增主键:一般会建立与业务无关的自增主键,不会触发叶子节点分裂。
延迟关联:通过使用覆盖索引查询返回需要的主键,再根据主键关联原表获得需要的数据。
InnoDB存储: * .frm文件是一份定义文件,也就是定义数据库表是一张怎么样的表。*.ibd文件则是该表的索引,数据存储文件,既该表的所有索引树,所有行记录数据都存储在该文件中。
MyISAM存储:* .frm文件是一份定义文件,也就是定义数据库表是一张怎么样的表。* .MYD文件是MyISAM存储引擎表的所有行数据的文件。* .MYI文件存放的是MyISAM存储引擎表的索引相关数据的文件。MyISAM引擎下,表数据和表索引数据是分开存储的。
MyISAM查询:在MyISAM下,主键索引和辅助键索引都属于非聚簇索引。查询不管是走主键索引,还是非主键索引,在叶子结点得到的都是目的数据的地址,还需要通过该地址,才能在数据文件中找到目的数据。
PS:InnoDB支持聚簇索引,MyISAM不支持聚簇索引
4、SQL事务隔离级别
ACID的四个特性
原子性(Atomicity):把多个操作放到一个事务中,保证这些操作要么都成功,要么都不成功
一致性(Consistency):理解成一串对数据进行操作的程序执行下来,不会对数据产生不好的影响,比如凭空产生,或消失
隔离性(Isolation,又称独立性):隔离性的意思就是多个事务之间互相不干扰,即使是并发事务的情况下,他们只是两个并发执行没有交集,互不影响的东西;当然实现中,也不一定需要这么完整隔离性,即不一定需要这么的互不干扰,有时候还是允许有部分干扰的。所以MySQL可以支持4种事务隔离性
持久性(Durability):当某个操作操作完毕了,那么结果就是这样了,并且这个操作会持久化到日志记录中
PS:ACID中C与CAP定理中C的区别
ACID的C着重强调单数据库事务操作时,要保证数据的完整和正确性,数据不会凭空消失跟增加。CAP 理论中的C指的是对一个数据多个备份的读写一致性
事务操作可能会出现的数据问题
1、脏读(dirty read):B事务更改数据还未提交,A事务已经看到并且用了。B事务如果回滚,则A事务做错了
2、 不可重复读(non-repeatable read):不可重复读的重点是修改: 同样的条件, 你读取过的数据, 再次读取出来发现值不一样了,只需要锁住满足条件的记录
3、 幻读(phantom read):事务A先修改了某个表的所有纪录的状态字段为已处理,未提交;事务B也在此时新增了一条未处理的记录,并提交了;事务A随后查询记录,却发现有一条记录是未处理的造成幻读现象,幻读仅专指新插入的行。幻读会造成语义上的问题跟数据一致性问题。
4、 在可重复读RR隔离级别下,普通查询是快照读,是不会看到别的事务插入的数据的。因此,幻读在当前读下才会出现。要用间隙锁解决此问题。
在说隔离级别之前,你首先要知道,你隔离得越严实,效率就会越低。因此很多时候,我们都要在二者之间寻找一个平衡点。SQL标准的事务隔离级别由低到高如下: 上图从上到下的模式会导致系统的并行性能依次降低,安全性依次提高。
读未提交:别人改数据的事务尚未提交,我在我的事务中也能读到。
读已提交(Oracle默认):别人改数据的事务已经提交,我在我的事务中才能读到。
可重复读(MySQL默认):别人改数据的事务已经提交,我在我的事务中也不去读,以此保证重复读一致性。
串行:我的事务尚未提交,别人就别想改数据。
标准跟实现:上面都是关于事务的标准,但是每一种数据库都有不同的实现,比如MySQL InnDB 默认为RR级别,但是不会出现幻读。因为当事务A更新了所有记录的某个字段,此时事务A会获得对这个表的表锁,因为事务A还没有提交,所以事务A获得的锁没有释放,此时事务B在该表插入新记录,会因为无法获得该表的锁,则导致插入操作被阻塞。只有事务A提交了事务后,释放了锁,事务B才能进行接下去的操作。所以可以说 MySQL的RR级别的隔离是已经实现解决了脏读,不可重复读和幻读的。
5、MySQL中的锁
无论是Java的并发编程还是数据库的并发操作都会涉及到锁,研发人员引入了悲观锁跟乐观锁这样一种锁的设计思想。
悲观锁:
优点:适合在写多读少的并发环境中使用,虽然无法维持非常高的性能,但是在乐观锁无法提更好的性能前提下,可以做到数据的安全性
缺点:加锁会增加系统开销,虽然能保证数据的安全,但数据处理吞吐量低,不适合在读书写少的场合下使用
乐观锁:
优点:在读多写少的并发场景下,可以避免数据库加锁的开销,提高DAO层的响应性能,很多情况下ORM工具都有带有乐观锁的实现,所以这些方法不一定需要我们人为的去实现。
缺点:在写多读少的并发场景下,即在写操作竞争激烈的情况下,会导致CAS多次重试,冲突频率过高,导致开销比悲观锁更高。
实现:数据库层面的乐观锁其实跟CAS思想类似, 通数据版本号或者时间戳也可以实现。
数据库并发场景主要有三种:
读-读:不存在任何问题,也不需要并发控制
读-写:有隔离性问题,可能遇到脏读,幻读,不可重复读
写-写:可能存更新丢失问题,比如第一类更新丢失,第二类更新丢失
两类更新丢失问题:
第一类更新丢失:事务A的事务回滚覆盖了事务B已提交的结果 第二类更新丢失:事务A的提交覆盖了事务B已提交的结果
为了合理贯彻落实锁的思想,MySQL中引入了杂七杂八的各种锁:
锁分类
MySQL支持三种层级的锁定,分别为
表级锁定
MySQL中锁定粒度最大的一种锁,最常使用的MYISAM与INNODB都支持表级锁定。
页级锁定
是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁,表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。
行级锁定
Mysql中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大行级锁不一定比表级锁要好:锁的粒度越细,代价越高,相比表级锁在表的头部直接加锁,行级锁还要扫描找到对应的行对其上锁,这样的代价其实是比较高的,所以表锁和行锁各有所长。
MyISAM中的锁
虽然MySQL支持表,页,行三级锁定,但MyISAM存储引擎只支持表锁。所以MyISAM的加锁相对比较开销低,但数据操作的并发性能相对就不高。但如果写操作都是尾插入,那还是可以支持一定程度的读写并发
从MyISAM所支持的锁中也可以看出,MyISAM是一个支持读读并发,但不支持通用读写并发,写写并发的数据库引擎,所以它更适合用于读多写少的应用场合,一般工程中也用的较少。
InnoDB中的锁
该模式下支持的锁实在是太多了,具体如下:
共享锁和排他锁 (Shared and Exclusive Locks)
意向锁(Intention Locks)
记录锁(Record Locks)
间隙锁(Gap Locks)
临键锁 (Next-Key Locks)
插入意向锁(Insert Intention Locks)
主键自增锁 (AUTO-INC Locks)
空间索引断言锁(Predicate Locks for Spatial Indexes)
举个栗子,比如行锁里的共享锁跟排它锁:lock in share modle 共享读锁:
为了确保自己查到的数据没有被其他的事务正在修改,也就是说确保查到的数据是最新的数据,并且不允许其他人来修改数据。但是自己不一定能够修改数据,因为有可能其他的事务也对这些数据使用了 in share mode 的方式上了S 锁。如果不及时的commit 或者rollback 也可能会造成大量的事务等待。
for update排它写锁:
为了让自己查到的数据确保是最新数据,并且查到后的数据只允许自己来修改的时候,需要用到for update。相当于一个 update 语句。在业务繁忙的情况下,如果事务没有及时的commit或者rollback 可能会造成其他事务长时间的等待,从而影响数据库的并发使用效率。
Gap Lock间隙锁:
1、行锁只能锁住行,如果在记录之间的间隙插入数据就无法解决了,因此MySQL引入了间隙锁(Gap Lock)。间隙锁是左右开区间。间隙锁之间不会冲突。
2、间隙锁和行锁合称NextKeyLock,每个NextKeyLock是前开后闭区间。
间隙锁加锁原则(学完忘那种):
1、加锁的基本单位是 NextKeyLock,是前开后闭区间。
2、查找过程中访问到的对象才会加锁。
3、索引上的等值查询,给唯一索引加锁的时候,NextKeyLock退化为行锁。
4、索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,NextKeyLock退化为间隙锁。
5、唯一索引上的范围查询会访问到不满足条件的第一个值为止。
mysql的事务四个特性以及事务的四个隔离级别
分别是原子性、一致性、隔离性、持久性。
原子性是指事务包含的所有操作要么全部成功,要么全部失败回滚,因此事务的操作如果成功就必须要完全应用到数据库,如果操作失败则不能对数据库有任何影响。
一致性是指事务必须使数据库从一个一致性状态变换到另一个一致性状态,也就是说一个事务执行之前和执行之后都必须处于一致性状态。举例来说,假设用户A和用户B两者的钱加起来一共是1000,那么不管A和B之间如何转账、转几次账,事务结束后两个用户的钱相加起来应该还得是1000,这就是事务的一致性。
隔离性是当多个用户并发访问数据库时,比如同时操作同一张表时,数据库为每一个用户开启的事务,不能被其他事务的操作所干扰,多个并发事务之间要相互隔离。关于事务的隔离性数据库提供了多种隔离级别,稍后会介绍到。
持久性是指一个事务一旦被提交了,那么对数据库中的数据的改变就是永久性的,即便是在数据库系统遇到故障的情况下也不会丢失提交事务的操作。例如我们在使用JDBC操作数据库时,在提交事务方法后,提示用户事务操作完成,当我们程序执行完成直到看到提示后,就可以认定事务已经正确提交,即使这时候数据库出现了问题,也必须要将我们的事务完全执行完成。否则的话就会造成我们虽然看到提示事务处理完毕,但是数据库因为故障而没有执行事务的重大错误。这是不允许的。
在数据库操作中,在并发的情况下可能出现如下问题:
正是为了解决以上情况,数据库提供了几种隔离级别。
数据库事务的隔离级别有4个,由低到高依次为Read uncommitted(未授权读取、读未提交)、Read committed(授权读取、读提交)、Repeatable read(可重复读取)、Serializable(序列化),这四个级别可以逐个解决脏读、不可重复读、幻象读这几类问题。
虽然数据库的隔离级别可以解决大多数问题,但是灵活度较差,为此又提出了悲观锁和乐观锁的概念。
悲观锁,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度。因此,在整个数据处理过程中,将数据处于锁定状态。悲观锁的实现,往往依靠数据库提供的锁机制。也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统的数据访问层中实现了加锁机制,也无法保证外部系统不会修改数据。
商品t_items表中有一个字段status,status为1代表商品未被下单,status为2代表商品已经被下单(此时该商品无法再次下单),那么我们对某个商品下单时必须确保该商品status为1。假设商品的id为1。
如果不采用锁,那么操作方法如下:
但是上面这种场景在高并发访问的情况下很可能会出现问题。例如当第一步操作中,查询出来的商品status为1。但是当我们执行第三步Update操作的时候,有可能出现其他人先一步对商品下单把t_items中的status修改为2了,但是我们并不知道数据已经被修改了,这样就可能造成同一个商品被下单2次,使得数据不一致。所以说这种方式是不安全的。
在上面的场景中,商品信息从查询出来到修改,中间有一个处理订单的过程,使用悲观锁的原理就是,当我们在查询出t_items信息后就把当前的数据锁定,直到我们修改完毕后再解锁。那么在这个过程中,因为t_items被锁定了,就不会出现有第三者来对其进行修改了。需要注意的是,要使用悲观锁,我们必须关闭mysql数据库的自动提交属性,因为MySQL默认使用autocommit模式,也就是说,当你执行一个更新操作后,MySQL会立刻将结果进行提交。我们可以使用命令设置MySQL为非autocommit模式: set autocommit=0;
设置完autocommit后,我们就可以执行我们的正常业务了。具体如下:
上面的begin/commit为事务的开始和结束,因为在前一步我们关闭了mysql的autocommit,所以需要手动控制事务的提交。
上面的第一步我们执行了一次查询操作: select status from t_items where id=1 for update; 与普通查询不一样的是,我们使用了 select…for update 的方式,这样就通过数据库实现了悲观锁。此时在t_items表中,id为1的那条数据就被我们锁定了,其它的事务必须等本次事务提交之后才能执行。这样我们可以保证当前的数据不会被其它事务修改。需要注意的是,在事务中,只有 SELECT ... FOR UPDATE 或 LOCK IN SHARE MODE 操作同一个数据时才会等待其它事务结束后才执行,一般 SELECT ... 则不受此影响。拿上面的实例来说,当我执行 select status from t_items where id=1 for update; 后。我在另外的事务中如果再次执行 select status from t_items where id=1 for update; 则第二个事务会一直等待第一个事务的提交,此时第二个查询处于阻塞的状态,但是如果我是在第二个事务中执行 select status from t_items where id=1; 则能正常查询出数据,不会受第一个事务的影响。
使用 select…for update 会把数据给锁住,不过我们需要注意一些锁的级别,MySQL InnoDB默认Row-Level Lock,所以只有「明确」地指定主键或者索引,MySQL 才会执行Row lock (只锁住被选取的数据) ,否则MySQL 将会执行Table Lock (将整个数据表单给锁住)。举例如下:
1、 select * from t_items where id=1 for update;
这条语句明确指定主键(id=1),并且有此数据(id=1的数据存在),则采用row lock。只锁定当前这条数据。
2、 select * from t_items where id=3 for update;
这条语句明确指定主键,但是却查无此数据,此时不会产生lock(没有元数据,又去lock谁呢?)。
3、 select * from t_items where name='手机' for update;
这条语句没有指定数据的主键,那么此时产生table lock,即在当前事务提交前整张数据表的所有字段将无法被查询。
4、 select * from t_items where id0 for update; 或者 select * from t_items where id1 for update; (注:在SQL中表示不等于)
上述两条语句的主键都不明确,也会产生table lock。
5、 select * from t_items where status=1 for update; (假设为status字段添加了索引)
这条语句明确指定了索引,并且有此数据,则产生row lock。
6、 select * from t_items where status=3 for update; (假设为status字段添加了索引)
这条语句明确指定索引,但是根据索引查无此数据,也就不会产生lock。
乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所以只会在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则返回用户错误的信息,让用户决定如何去做。实现乐观锁一般来说有以下2种方式:
网页标题:mysql乐观锁怎么实现,mysql如何实现悲观锁
分享链接:http://cdiso.cn/article/dsecjcd.html