python机器学习库scikit-learn:SVR的基本应用-创新互联
scikit-learn是python的第三方机器学习库,里面集成了大量机器学习的常用方法。例如:贝叶斯,svm,knn等。
创新互联成立十余年来,这条路我们正越走越好,积累了技术与客户资源,形成了良好的口碑。为客户提供成都网站建设、成都做网站、网站策划、网页设计、主机域名、网络营销、VI设计、网站改版、漏洞修补等服务。网站是否美观、功能强大、用户体验好、性价比高、打开快等等,这些对于网站建设都非常重要,创新互联通过对建站技术性的掌握、对创意设计的研究为客户提供一站式互联网解决方案,携手广大客户,共同发展进步。scikit-learn的官网 : http://scikit-learn.org/stable/index.html点击打开链接
SVR是支持向量回归(support vector regression)的英文缩写,是支持向量机(SVM)的重要的应用分支。
scikit-learn中提供了基于libsvm的SVR解决方案。
PS:libsvm是台湾大学林智仁教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包。
我们自己随机产生一些值,然后使用sin函数进行映射,使用SVR对数据进行拟合
from __future__ import division import time import numpy as np from sklearn.svm import SVR from sklearn.model_selection import GridSearchCV from sklearn.model_selection import learning_curve import matplotlib.pyplot as plt rng = np.random.RandomState(0) ############################################################################# # 生成随机数据 X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() # 在标签中对每50个结果标签添加噪声 y[::50] += 2 * (0.5 - rng.rand(int(X.shape[0]/50))) X_plot = np.linspace(0, 5, 100000)[:, None] ############################################################################# # 训练SVR模型 #训练规模 train_size = 100 #初始化SVR svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1), cv=5, param_grid={"C": [1e0, 1e1, 1e2, 1e3], "gamma": np.logspace(-2, 2, 5)}) #记录训练时间 t0 = time.time() #训练 svr.fit(X[:train_size], y[:train_size]) svr_fit = time.time() - t0 t0 = time.time() #测试 y_svr = svr.predict(X_plot) svr_predict = time.time() - t0
网页题目:python机器学习库scikit-learn:SVR的基本应用-创新互联
浏览路径:http://cdiso.cn/article/dpdhsh.html