python闭合函数 Python闭包函数

python函数的闭包怎么理解

1. 闭包的概念

创新互联公司专注为客户提供全方位的互联网综合服务,包含不限于成都做网站、成都网站设计、山阳网络推广、小程序设计、山阳网络营销、山阳企业策划、山阳品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联公司为所有大学生创业者提供山阳建站搭建服务,24小时服务热线:028-86922220,官方网址:www.cdcxhl.com

首先还得从基本概念说起,什么是闭包呢?来看下维基上的解释:

复制代码代码如下:

在计算机科学中,闭包(Closure)是词法闭包(Lexical Closure)的简称,是引用了自由变量的函数。这个被引用的自由变量将和这个函数一同存在,即使已经离开了创造它的环境也不例外。所以,有另一种说法认为闭包是由函数和与其相关的引用环境组合而成的实体。闭包在运行时可以有多个实例,不同的引用环境和相同的函数组合可以产生不同的实例。

....

上面提到了两个关键的地方: 自由变量 和 函数, 这两个关键稍后再说。还是得在赘述下“闭包”的意思,望文知意,可以形象的把它理解为一个封闭的包裹,这个包裹就是一个函数,当然还有函数内部对应的逻辑,包裹里面的东西就是自由变量,自由变量可以在随着包裹到处游荡。当然还得有个前提,这个包裹是被创建出来的。

在通过Python的语言介绍一下,一个闭包就是你调用了一个函数A,这个函数A返回了一个函数B给你。这个返回的函数B就叫做闭包。你在调用函数A的时候传递的参数就是自由变量。

举个例子:

复制代码代码如下:

def func(name):

def inner_func(age):

print 'name:', name, 'age:', age

return inner_func

bb = func('the5fire')

bb(26) # name: the5fire age: 26

这里面调用func的时候就产生了一个闭包——inner_func,并且该闭包持有自由变量——name,因此这也意味着,当函数func的生命周期结束之后,name这个变量依然存在,因为它被闭包引用了,所以不会被回收。

另外再说一点,闭包并不是Python中特有的概念,所有把函数做为一等公民的语言均有闭包的概念。不过像Java这样以class为一等公民的语言中也可以使用闭包,只是它得用类或接口来实现。

更多概念上的东西可以参考最后的参考链接。

2. 为什么使用闭包

基于上面的介绍,不知道读者有没有感觉这个东西和类有点相似,相似点在于他们都提供了对数据的封装。不同的是闭包本身就是个方法。和类一样,我们在编程时经常会把通用的东西抽象成类,(当然,还有对现实世界——业务的建模),以复用通用的功能。闭包也是一样,当我们需要函数粒度的抽象时,闭包就是一个很好的选择。

在这点上闭包可以被理解为一个只读的对象,你可以给他传递一个属性,但它只能提供给你一个执行的接口。因此在程序中我们经常需要这样的一个函数对象——闭包,来帮我们完成一个通用的功能,比如后面会提到的——装饰器。

3. 使用闭包

第一种场景 ,在python中很重要也很常见的一个使用场景就是装饰器,Python为装饰器提供了一个很友好的“语法糖”——@,让我们可以很方便的使用装饰器,装饰的原理不做过多阐述,简言之你在一个函数func上加上@decorator_func, 就相当于decorator_func(func):

复制代码代码如下:

def decorator_func(func):

def wrapper(*args, **kwargs):

return func(*args, **kwargs)

return wrapper

@decorator_func

def func(name):

print 'my name is', name

# 等价于

decorator_func(func)

在装饰器的这个例子中,闭包(wrapper)持有了外部的func这个参数,并且能够接受外部传过来的参数,接受过来的参数在原封不动的传给func,并返回执行结果。

这是个简单的例子,稍微复杂点可以有多个闭包,比如经常使用的那个LRUCache的装饰器,装饰器上可以接受参数@lru_cache(expire=500)这样。实现起来就是两个闭包的嵌套:

复制代码代码如下:

def lru_cache(expire=5):

# 默认5s超时

def func_wrapper(func):

def inner(*args, **kwargs):

# cache 处理 bala bala bala

return func(*args, **kwargs)

return inner

return func_wrapper

@lru_cache(expire=10*60)

def get(request, pk)

# 省略具体代码

return response()

不太懂闭包的同学一定得能够理解上述代码,这是我们之前面试经常会问到的面试题。

第二个场景 ,就是基于闭包的一个特性——“惰性求值”。这个应用比较常见的是在数据库访问的时候,比如说:

复制代码代码如下:

# 伪代码示意

class QuerySet(object):

def __init__(self, sql):

self.sql = sql

self.db = Mysql.connect().corsor() # 伪代码

def __call__(self):

return db.execute(self.sql)

def query(sql):

return QuerySet(sql)

result = query("select name from user_app")

if time now:

print result # 这时才执行数据库访问

上面这个不太恰当的例子展示了通过闭包完成惰性求值的功能,但是上面query返回的结果并不是函数,而是具有函数功能的类。有兴趣的可以去看看Django的queryset的实现,原理类似。

第三种场景 , 需要对某个函数的参数提前赋值的情况,当然在Python中已经有了很好的解决访问 functools.parial,但是用闭包也能实现。

复制代码代码如下:

def partial(**outer_kwargs):

def wrapper(func):

def inner(*args, **kwargs):

for k, v in outer_kwargs.items():

kwargs[k] = v

return func(*args, **kwargs)

return inner

return wrapper

@partial(age=15)

def say(name=None, age=None):

print name, age

say(name="the5fire")

# 当然用functools比这个简单多了

# 只需要: functools.partial(say, age=15)(name='the5fire')

看起来这又是一个牵强的例子,不过也算是实践了闭包的应用。

求帮助,Python闭包和返回函数问题

(1)unpack tuple和list, 可以让函数返回多个值

def count():

return (1, 2, 3) # 或者 return [1, 2, 3]

# 把列表解包,把1 2 3 分别赋值给 a b c

a, b, c = count()

print a, b, c

# 输出 1, 2, 3

(2)假设你知道Python的dict类型。Python中,在函数中定义一个变量的时候,会在一个隐藏的叫locals的dict里面插入key-value,其中key是变量名,value是变量值。而引用一个变量的时候,则首先会在这个叫locals的dict里面,根据变量名作为key,去查对应的值。

var = 1 # 你可以认为这里进行了 locals['var'] = 1 的操作

print var # 在对var变量进行求值的时候,就在locals['var']里面找var变量对应的值

(3)for循环中,每次循环只是给 `i` 重新绑定值

for i in (1, 2, 3):

print i

print i

# 一次输入 1 2 3 3

每次`for i in (1, 2, 3)`相当于在`print i`之前,进行了

`locals['i'] = 1`

`locals['i'] = 2`

`locals['i'] = 3`

的操作

所以最后的`print i`再去locals字典里面找`i`的时候,就变成 3 了。

(4)闭包是 一个函数加上这个函数引用的外部变量

var = 1

def f():

print var

# 这里的闭包是函数 f 和 f 引用的外部变量 var

def count():

var2 = 2

def f():

print var2

# 这里的闭包是函数 f 和 f 引用的外部变量 var2

return f

拿第一个函数 f 来说。在 f 运行的时候,解释器拿着'var'这个字符串去locals字典里面找,发现找不到,于是在closure字典里面找,最后closure字典里面找,你可以认为就是找closure['var'],然后发现找到对应的值。count里面的 f 函数同理。

(为了容易理解,我这里说谎了。实际上 f 压根没有closure,count里面的 f 才有。其实closure压根不是像locals那样的字典)

(5)函数定义时,函数只是记录变量的名字。

要区分什么是名字,什么是值。

`i = 1`这里 i 只是名字,只是一个字符串 'i' 。这句话运行完,locals['i'] = 1,就说 i 对应的值是1

def count():

fs = []

for i in range(1, 4):

# 定义一个函数,等价于运行了 locals['f'] = 真正生成的函数

# 每次循环,这里都会重新生成一个函数,然后把重新生成的函数赋值给 locals['f']

def f():

return i * i # 引用了'i'这个名字,但并不是引用了'i'对应的值

# 等价于 locals['fs'].append(locals['f'])

# f 不是函数,它只是一个名字'f'。f 引用的东西,也就是locals['f']才是真正的函数

fs.append(f)

# 于是这个for循环生成了三个函数,这三个函数是没有名字的,这个函数运行完后,它们跟'f'这个名字就毛关系都没有了(是的我说慌了,但可以先不管)

# 把整个列表返回,这个列表包含了三个函数

return fs

# count()返回三个函数的列表,unpack 列表的语法把列表中的三个函数抽出来,重新给他们命名为 f1, f2, f3

# 也就是说,

# locals['f1'] = 列表中的第1个函数

# locals['f2'] = 列表中的第2个函数

# locals['f3'] = 列表中的第3个函数

# 这三个函数跟'f'这个名字现在毛关系都没有。(其实是有的,但为了说明需要简化,现在你可以完全不管括号里面说的话)

f1, f2, f3 = count()

print f1(), f2(), f3()

# 好了我们运行它们,输入都是 9

# def f():

# return i * i

这是因为 f1 现在对应的函数,里面引用了 'i' 这个字符串,我们根据 'i '这个字符串去找它对应的值,先找到 f 当前的locals字典,发现没有,因为函数定义的时候没有定义 i 变量。然后再去closure['i']里面找,因为Python是通过closure字典实现闭包的(就当它是对的好不好),所以我们可以在closure['i']找到值,这个值就是我们上一次运行的时候count函数里面残留的locals['i'],而由于for循环三遍之后,locals['i'] == 3,所以找到 i 的值就是3。所以最后输出都是9

python什么是闭包 闭包的作用域

在函数中可以定义另一个函数时,如果内部的函数引用了外部的函数的变量,则可能产生闭包。

闭包可以用来在一个函数与一组私有变量之间创建关联关系。

在给定函数被多次调用的过程中,这些私有变量能够保持其持久性。

形成闭包的三个条件

必须有一个内嵌函数—这对应函数之间的嵌套;

内嵌函数必须引用一个定义在闭合范围内的变量—内部函数引用外部变量;

外部函数必须返回内嵌函数—必须返回内部函数。

换句话来说:闭包的概念很简单,一个可以引用在函数闭合范围内变量的函数,即内部函数,只有那个内部函数才有所谓的__closure__属性。

闭包的原理

形成闭包之后,闭包函数会获得一个非空的_Closure_属性,这个属性是一个元组。

组里面的对象为cell对象,而访问cell对象的cell_contents属性则可以得到闭包变量的当前值。

而随着闭包的继续调用,变量会进行再次更新。由此可见,一般形成闭包之后,Python确定会将_closure_和闭包函数绑定作为储存闭包变量的场所。

闭包的好处是什么?

其实,闭包并不是必须的。

没有闭包的话,Python的功能不会受到任何影响;但有了闭包之后,可以提供一种额外的解决方案。


网页标题:python闭合函数 Python闭包函数
当前网址:http://cdiso.cn/article/doocsdi.html

其他资讯