go语言每秒多少请求 go语言sprintf
如何用go语言每分钟处理100万个请求
在Malwarebytes 我们经历了显著的增长,自从我一年前加入了硅谷的公司,一个主要的职责成了设计架构和开发一些系统来支持一个快速增长的信息安全公司和所有需要的设施来支持一个每天百万用户使用的产品。我在反病毒和反恶意软件行业的不同公司工作了12年,从而我知道由于我们每天处理大量的数据,这些系统是多么复杂。
马龙ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为成都创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!
有趣的是,在过去的大约9年间,我参与的所有的web后端的开发通常是通过Ruby on Rails技术实现的。不要错怪我。我喜欢Ruby on Rails,并且我相信它是个令人惊讶的环境。但是一段时间后,你会开始以ruby的方式开始思考和设计系统,你会忘记,如果你可以利用多线程、并行、快速执行和小内存开销,软件架构本来应该是多么高效和简单。很多年期间,我是一个c/c++、Delphi和c#开发者,我刚开始意识到使用正确的工具可以把复杂的事情变得简单些。
作为首席架构师,我不会很关心在互联网上的语言和框架战争。我相信效率、生产力。代码可维护性主要依赖于你如何把解决方案设计得很简单。
问题
当工作在我们的匿名遥测和分析系统中,我们的目标是可以处理来自于百万级别的终端的大量的POST请求。web处理服务可以接收包含了很多payload的集合的JSON数据,这些数据需要写入Amazon S3中。接下来,map-reduce系统可以操作这些数据。
按照习惯,我们会调研服务层级架构,涉及的软件如下:
Sidekiq
Resque
DelayedJob
Elasticbeanstalk Worker Tier
RabbitMQ
and so on…
搭建了2个不同的集群,一个提供web前端,另外一个提供后端处理,这样我们可以横向扩展后端服务的数量。
但是,从刚开始,在 讨论阶段我们的团队就知道我们应该使用Go,因为我们看到这会潜在性地成为一个非常庞大( large traffic)的系统。我已经使用了Go语言大约2年时间,我们开发了几个系统,但是很少会达到这样的负载(amount of load)。
我们开始创建一些结构,定义从POST调用得到的web请求负载,还有一个上传到S3 budket的函数。
type PayloadCollection struct {
WindowsVersion string `json:"version"`
Token string `json:"token"`
Payloads []Payload `json:"data"`
}
type Payload struct {
// [redacted]
}
func (p *Payload) UploadToS3() error {
// the storageFolder method ensures that there are no name collision in
// case we get same timestamp in the key name
storage_path := fmt.Sprintf("%v/%v", p.storageFolder, time.Now().UnixNano())
bucket := S3Bucket
b := new(bytes.Buffer)
encodeErr := json.NewEncoder(b).Encode(payload)
if encodeErr != nil {
return encodeErr
}
// Everything we post to the S3 bucket should be marked 'private'
var acl = s3.Private
var contentType = "application/octet-stream"
return bucket.PutReader(storage_path, b, int64(b.Len()), contentType, acl, s3.Options{})
}
本地Go routines方法
刚开始,我们采用了一个非常本地化的POST处理实现,仅仅尝试把发到简单go routine的job并行化:
func payloadHandler(w http.ResponseWriter, r *http.Request) {
if r.Method != "POST" {
w.WriteHeader(http.StatusMethodNotAllowed)
return
}
// Read the body into a string for json decoding
var content = PayloadCollection{}
err := json.NewDecoder(io.LimitReader(r.Body, MaxLength)).Decode(content)
if err != nil {
w.Header().Set("Content-Type", "application/json; charset=UTF-8")
w.WriteHeader(http.StatusBadRequest)
return
}
// Go through each payload and queue items individually to be posted to S3
for _, payload := range content.Payloads {
go payload.UploadToS3() // ----- DON'T DO THIS
}
w.WriteHeader(http.StatusOK)
}
对于中小负载,这会对大多数的人适用,但是大规模下,这个方案会很快被证明不是很好用。我们期望的请求数,不在我们刚开始计划的数量级,当我们把第一个版本部署到生产环境上。我们完全低估了流量。
上面的方案在很多地方很不好。没有办法控制我们产生的go routine的数量。由于我们收到了每分钟1百万的POST请求,这段代码很快就崩溃了。
再次尝试
我们需要找一个不同的方式。自开始我们就讨论过, 我们需要保持请求处理程序的生命周期很短,并且进程在后台产生。当然,这是你在Ruby on Rails的世界里必须要做的事情,否则你会阻塞在所有可用的工作 web处理器上,不管你是使用puma、unicore还是passenger(我们不要讨论JRuby这个话题)。然后我们需要利用常用的处理方案来做这些,比如Resque、 Sidekiq、 SQS等。这个列表会继续保留,因为有很多的方案可以实现这些。
所以,第二次迭代,我们创建了一个缓冲channel,我们可以把job排队,然后把它们上传到S3。因为我们可以控制我们队列中的item最大值,我们有大量的内存来排列job,我们认为只要把job在channel里面缓冲就可以了。
var Queue chan Payload
func init() {
Queue = make(chan Payload, MAX_QUEUE)
}
func payloadHandler(w http.ResponseWriter, r *http.Request) {
...
// Go through each payload and queue items individually to be posted to S3
for _, payload := range content.Payloads {
Queue - payload
}
...
}
接下来,我们再从队列中取job,然后处理它们。我们使用类似于下面的代码:
func StartProcessor() {
for {
select {
case job := -Queue:
job.payload.UploadToS3() // -- STILL NOT GOOD
}
}
}
说实话,我不知道我们在想什么。这肯定是一个满是Red-Bulls的夜晚。这个方法不会带来什么改善,我们用了一个 有缺陷的缓冲队列并发,仅仅是把问题推迟了。我们的同步处理器同时仅仅会上传一个数据到S3,因为来到的请求远远大于单核处理器上传到S3的能力,我们的带缓冲channel很快达到了它的极限,然后阻塞了请求处理逻辑的queue更多item的能力。
我们仅仅避免了问题,同时开始了我们的系统挂掉的倒计时。当部署了这个有缺陷的版本后,我们的延时保持在每分钟以常量增长。
最好的解决方案
我们讨论过在使用用Go channel时利用一种常用的模式,来创建一个二级channel系统,一个来queue job,另外一个来控制使用多少个worker来并发操作JobQueue。
想法是,以一个恒定速率并行上传到S3,既不会导致机器崩溃也不好产生S3的连接错误。这样我们选择了创建一个Job/Worker模式。对于那些熟悉Java、C#等语言的开发者,可以把这种模式想象成利用channel以golang的方式来实现了一个worker线程池,作为一种替代。
var (
MaxWorker = os.Getenv("MAX_WORKERS")
MaxQueue = os.Getenv("MAX_QUEUE")
)
// Job represents the job to be run
type Job struct {
Payload Payload
}
// A buffered channel that we can send work requests on.
var JobQueue chan Job
// Worker represents the worker that executes the job
type Worker struct {
WorkerPool chan chan Job
JobChannel chan Job
quit chan bool
}
func NewWorker(workerPool chan chan Job) Worker {
return Worker{
WorkerPool: workerPool,
JobChannel: make(chan Job),
quit: make(chan bool)}
}
// Start method starts the run loop for the worker, listening for a quit channel in
// case we need to stop it
func (w Worker) Start() {
go func() {
for {
// register the current worker into the worker queue.
w.WorkerPool - w.JobChannel
select {
case job := -w.JobChannel:
// we have received a work request.
if err := job.Payload.UploadToS3(); err != nil {
log.Errorf("Error uploading to S3: %s", err.Error())
}
case -w.quit:
// we have received a signal to stop
return
}
}
}()
}
// Stop signals the worker to stop listening for work requests.
func (w Worker) Stop() {
go func() {
w.quit - true
}()
}
我们已经修改了我们的web请求handler,用payload创建一个Job实例,然后发到JobQueue channel,以便于worker来获取。
func payloadHandler(w http.ResponseWriter, r *http.Request) {
if r.Method != "POST" {
w.WriteHeader(http.StatusMethodNotAllowed)
return
}
// Read the body into a string for json decoding
var content = PayloadCollection{}
err := json.NewDecoder(io.LimitReader(r.Body, MaxLength)).Decode(content)
if err != nil {
w.Header().Set("Content-Type", "application/json; charset=UTF-8")
w.WriteHeader(http.StatusBadRequest)
return
}
// Go through each payload and queue items individually to be posted to S3
for _, payload := range content.Payloads {
// let's create a job with the payload
work := Job{Payload: payload}
// Push the work onto the queue.
JobQueue - work
}
w.WriteHeader(http.StatusOK)
}
在web server初始化时,我们创建一个Dispatcher,然后调用Run()函数创建一个worker池子,然后开始监听JobQueue中的job。
dispatcher := NewDispatcher(MaxWorker)
dispatcher.Run()
下面是dispatcher的实现代码:
type Dispatcher struct {
// A pool of workers channels that are registered with the dispatcher
WorkerPool chan chan Job
}
func NewDispatcher(maxWorkers int) *Dispatcher {
pool := make(chan chan Job, maxWorkers)
return Dispatcher{WorkerPool: pool}
}
func (d *Dispatcher) Run() {
// starting n number of workers
for i := 0; i d.maxWorkers; i++ {
worker := NewWorker(d.pool)
worker.Start()
}
go d.dispatch()
}
func (d *Dispatcher) dispatch() {
for {
select {
case job := -JobQueue:
// a job request has been received
go func(job Job) {
// try to obtain a worker job channel that is available.
// this will block until a worker is idle
jobChannel := -d.WorkerPool
// dispatch the job to the worker job channel
jobChannel - job
}(job)
}
}
}
注意到,我们提供了初始化并加入到池子的worker的最大数量。因为这个工程我们利用了Amazon Elasticbeanstalk带有的docker化的Go环境,所以我们常常会遵守12-factor方法论来配置我们的生成环境中的系统,我们从环境变了读取这些值。这种方式,我们控制worker的数量和JobQueue的大小,所以我们可以很快的改变这些值,而不需要重新部署集群。
var (
MaxWorker = os.Getenv("MAX_WORKERS")
MaxQueue = os.Getenv("MAX_QUEUE")
)
直接结果
我们部署了之后,立马看到了延时降到微乎其微的数值,并未我们处理请求的能力提升很大。
Elastic Load Balancers完全启动后,我们看到ElasticBeanstalk 应用服务于每分钟1百万请求。通常情况下在上午时间有几个小时,流量峰值超过每分钟一百万次。
我们一旦部署了新的代码,服务器的数量从100台大幅 下降到大约20台。
我们合理配置了我们的集群和自动均衡配置之后,我们可以把服务器的数量降至4x EC2 c4.Large实例,并且Elastic Auto-Scaling设置为如果CPU达到5分钟的90%利用率,我们就会产生新的实例。
总结
在我的书中,简单总是获胜。我们可以使用多队列、后台worker、复杂的部署设计一个复杂的系统,但是我们决定利用Elasticbeanstalk 的auto-scaling的能力和Go语言开箱即用的特性简化并发。
我们仅仅用了4台机器,这并不是什么新鲜事了。可能它们还不如我的MacBook能力强大,但是却处理了每分钟1百万的写入到S3的请求。
处理问题有正确的工具。当你的 Ruby on Rails 系统需要更强大的web handler时,可以考虑下ruby生态系统之外的技术,或许可以得到更简单但更强大的替代方案。
为什么go语言适合开发网游服务器端
个人觉得golang十分适合进行网游服务器端开发,写下这篇文章总结一下。 从网游的角度看: 要成功的运营一款网游,很大程度上依赖于玩家自发形成的社区。只有玩家自发形成一个稳定的生态系统,游戏才能持续下去,避免鬼城的出现。而这就需要多次大量导入用户,在同时在线用户量达到某个临界点的时候,才有可能完成。因此,多人同时在线十分有必要。 再来看网游的常见玩法,除了排行榜这类统计和数据汇总的功能外,基本没有需要大量CPU时间的应用。以前的项目里,即时战斗产生的各种伤害计算对CPU的消耗也不大。玩家要完成一次操作,需要通过客户端-服务器端-客户端这样一个来回,为了获得高响应速度,满足玩家体验,服务器端的处理也不能占用太多时间。所以,每次请求对应的CPU占用是比较小的。 网游的IO主要分两个方面,一个是网络IO,一个是磁盘IO。网络IO方面,可以分成美术资源的IO和游戏逻辑指令的IO,这里主要分析游戏逻辑的IO。游戏逻辑的IO跟CPU占用的情况相似,每次请求的字节数很小,但由于多人同时在线,因此并发数相当高。另外,地图信息的广播也会带来比较频繁的网络通信。磁盘IO方面,主要是游戏数据的保存。采用不同的数据库,会有比较大的区别。以前的项目里,就经历了从MySQL转向MongoDB这种内存数据库的过程,磁盘IO不再是瓶颈。总体来说,还是用内存做一级缓冲,避免大量小数据块读写的方案。 针对网游的这些特点,golang的语言特性十分适合开发游戏服务器端。 首先,go语言提供goroutine机制作为原生的并发机制。每个goroutine所需的内存很少,实际应用中可以启动大量的goroutine对并发连接进行响应。goroutine与gevent中的greenlet很相像,遇到IO阻塞的时候,调度器就会自动切换到另一个goroutine执行,保证CPU不会因为IO而发生等待。而goroutine与gevent相比,没有了python底层的GIL限制,就不需要利用多进程来榨取多核机器的性能了。通过设置最大线程数,可以控制go所启动的线程,每个线程执行一个goroutine,让CPU满负载运行。 同时,go语言为goroutine提供了独到的通信机制channel。channel发生读写的时候,也会挂起当前操作channel的goroutine,是一种同步阻塞通信。这样既达到了通信的目的,又实现同步,用CSP模型的观点看,并发模型就是通过一组进程和进程间的事件触发解决任务的。虽然说,主流的编程语言之间,只要是图灵完备的,他们就都能实现相同的功能。但go语言提供的这种协程间通信机制,十分优雅地揭示了协程通信的本质,避免了以往锁的显式使用带给程序员的心理负担,确是一大优势。进行网游开发的程序员,可以将游戏逻辑按照单线程阻塞式的写,不需要额外考虑线程调度的问题,以及线程间数据依赖的问题。因为,线程间的channel通信,已经表达了线程间的数据依赖关系了,而go的调度器会给予妥善的处理。 另外,go语言提供的gc机制,以及对指针的保护式使用,可以大大减轻程序员的开发压力,提高开发效率。 展望未来,我期待go语言社区能够提供更多的goroutine间的隔离机制。个人十分推崇erlang社区的脆崩哲学,推动应用发生预期外行为时,尽早崩溃,再fork出新进程处理新的请求。对于协程机制,需要由程序员保证执行的函数不会发生死循环,导致线程卡死。
【接口测试】Go语言进行简单的接口测试
在正常的测试中,当我们需要进行接口测试时,通常使用接口调试工具,如postman进行接口测试
目前我在尝试使用Go语言进行接口测试,使用的库均为Go自带的库。
注:当前采用的接口为时事新闻接口,每天可以请求100次,需要的同学,可以自行使用。
网站题目:go语言每秒多少请求 go语言sprintf
本文来源:http://cdiso.cn/article/dogdceo.html