使用pythontushareTkinter实现简单股票可视化查询系统-创新互联

本篇文章给大家分享的是有关使用python tushare Tkinter实现简单股票可视化查询系统,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

公司专注于为企业提供成都做网站、成都网站建设、微信公众号开发、商城网站开发,成都微信小程序,软件定制网站设计等一站式互联网企业服务。凭借多年丰富的经验,我们会仔细了解各客户的需求而做出多方面的分析、设计、整合,为客户设计出具风格及创意性的商业解决方案,创新互联公司更提供一系列网站制作和网站推广的服务。

前言:

这次比上次新添了公司信息内容跟一个股票基本面指标选项卡,股票基本面指标选项卡用的是matplotlib写的,采用plt.subplot2grid()子图写的,没写主图,在此期间遇到了无法标题中文话,一写就乱码,用过网上很多解决方法,目前也是无解,先记录,后面有时间再解决,如果你有解决方法请务必赐教,实在这个问题卡了我一天多了,如果单单是只用matplotlib输出图形,乱码问题网上的很多方法也是能够解决,我也不清楚究竟是我写的代码哪里跟中文显示冲突了,一时间代码也开始有点乱了,后面估计会越写越乱,等再写一两个功能抽个时间简洁下代码。更新的代码如下:

import pandas as pd
import tushare as ts
import mplfinance as mpf
import tkinter.tix as tix
from tkinter import ttk
import tkinter.font as tf
from tkinter.constants import *
import matplotlib.pyplot as plt
import matplotlib.dates as mdates  #處理日期
from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg, NavigationToolbar2Tk)

pro = ts.pro_api('要到tushare官网注册个账户然后将token复制到这里,可以的话请帮个忙用文章末我分享的链接注册,谢谢')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# pd.set_option()就是pycharm输出控制显示的设置
pd.set_option('expand_frame_repr', False) # True就是可以换行显示。设置成False的时候不允许换行
pd.set_option('display.max_columns', None) # 显示所有列
# pd.set_option('display.max_rows', None) # 显示所有行
pd.set_option('colheader_justify', 'centre') # 显示居中

root = tix.Tk() # 创建主窗口
screenWidth = root.winfo_screenwidth() # 获取屏幕宽的分辨率
screenHeight = root.winfo_screenheight()
x, y = int(screenWidth / 4), int(screenHeight / 4) # 初始运行窗口屏幕坐标(x, y),设置成在左上角显示
width = int(screenWidth / 2) # 初始化窗口是显示器分辨率的二分之一
height = int(screenHeight / 2)
root.geometry('{}x{}+{}+{}'.format(width, height, x, y)) # 窗口的大小跟初始运行位置
root.title('Wilbur量化复盘分析软件')
# root.resizable(0, 0) # 固定窗口宽跟高,不能调整大小,无法大窗口化
root.iconbitmap('ZHY.ico') # 窗口左上角图标设置,需要自己放张图标为icon格式的图片文件在项目文件目录下

# 首先创建主框架
main_frame = tix.Frame(root, width=screenWidth, height=screenHeight,
            relief=tix.SUNKEN, bg='#353535', bd=5, borderwidth=4)
main_frame.pack(fill=BOTH, expand=0)

# 在主框架下创建股票代码输入子框架
code_frame = tix.Frame(main_frame, borderwidth=1, bg='#353535')
code_frame.pack()
# 创建标签‘股票代码'
stock_label = tix.Label(code_frame, text='股票代码', bd=1)
stock_label.pack(side=LEFT)
# 创建股票代码输入框
input_code_var = tix.StringVar()
code_widget = tix.Entry(code_frame, textvariable=input_code_var, borderwidth=1, justify=CENTER)
# input_code_get = input_code_var.set(input_code_var.get()) # 获取输入的新值
code_widget.pack(side=LEFT, padx=4)

# 在主框架下创建股票日期输入框子框架
input_date_frame = tix.Frame(main_frame, borderwidth=1, bg='#353535')
input_date_frame.pack()
# 创建标签‘开始日期'
date_start_label = tix.Label(input_date_frame, text='开始日期', bd=1)
date_start_label.pack(side=LEFT)
# 创建开始日期代码输入框
input_startdate_var = tix.StringVar()
startdate_widget = tix.Entry(input_date_frame, textvariable=input_startdate_var, borderwidth=1, justify=CENTER)
input_startdate_get = input_startdate_var.set(input_startdate_var.get()) # 获取输入的新值
startdate_widget.pack(side=LEFT, padx=4)
# 创建标签‘结束日期'
date_end_label = tix.Label(input_date_frame, text='结束日期', bd=1)
date_end_label.pack(side=LEFT)
# 创建结束日期代码输入框
input_enddate_var = tix.StringVar()
enddate_widget = tix.Entry(input_date_frame, textvariable=input_enddate_var, borderwidth=1, justify=CENTER)
input_enddate_get = input_enddate_var.set(input_enddate_var.get()) # 获取输入的新值
enddate_widget.pack(side=LEFT, padx=4)


# 以下函数作用是省略输入代码后缀.sz .sh
def code_name_transform(get_stockcode): # 输入的数字股票代码转换成字符串股票代码
  str_stockcode = str(get_stockcode)
  str_stockcode = str_stockcode.strip() # 删除前后空格字符
  if 6 > len(str_stockcode) > 0:
    str_stockcode = str_stockcode.zfill(6) + '.SZ' # zfill()函数返回指定长度的字符串,原字符串右对齐,前面填充0
  if len(str_stockcode) == 6:
    if str_stockcode[0:1] == '0':
      str_stockcode = str_stockcode + '.SZ'
    if str_stockcode[0:1] == '3':
      str_stockcode = str_stockcode + '.SZ'
    if str_stockcode[0:1] == '6':
      str_stockcode = str_stockcode + '.SH'
  return str_stockcode


tabControl = ttk.Notebook(root) # 创建Notebook
stock_graphics_daily = tix.Frame(root, borderwidth=1, bg='#353535', relief=tix.RAISED) # 增加新选项卡日K线图
# stock_graphics_daily.pack(expand=1, fill=tk.BOTH, anchor=tk.CENTER)
stock_graphics_daily_basic = tix.Frame(root, borderwidth=1, bg='#353535', relief=tix.RAISED) # 增加新选项卡基本面指标
stock_graphics_week = tix.Frame(root, borderwidth=1, bg='#353535', relief=tix.RAISED)
stock_graphics_month = tix.Frame(root, borderwidth=1, bg='#353535', relief=tix.RAISED)
company_information = tix.Frame(root, borderwidth=1, bg='#353535', relief=tix.RAISED)

tabControl.add(stock_graphics_daily, text='日K线图') # 把新选项卡日K线框架增加到Notebook
tabControl.add(stock_graphics_daily_basic, text='基本面指标')
tabControl.add(stock_graphics_week, text='周K线图')
tabControl.add(stock_graphics_month, text='月K线图')
tabControl.add(company_information, text='公司信息')
tabControl.pack(expand=1, fill="both") # 设置选项卡布局
tabControl.select(stock_graphics_daily) # 默认选定日K线图开始


# 创建股票图形输出框架
def go():
  # 清除stock_graphics_daily框架中的控件内容,winfo_children()返回的项是一个小部件列表,
  # 以下代码作用是为每次点击查询按钮时更新图表内容,如果没有以下代码句,则每次点击查询会再生成一个图表
  for widget_daily in stock_graphics_daily.winfo_children():
    widget_daily.destroy()
  for widget_daily_basic in stock_graphics_daily_basic.winfo_children():
    widget_daily_basic.destroy()
  for widget_week in stock_graphics_week.winfo_children():
    widget_week.destroy()
  for widget_month in stock_graphics_month.winfo_children():
    widget_month.destroy()
  for widget_company_information in company_information.winfo_children():
    widget_company_information.destroy()

  stock_name = input_code_var.get()
  code_name = code_name_transform(stock_name)
  start_date = input_startdate_var.get()
  end_date = input_enddate_var.get()

  stock_data = pro.daily(ts_code=code_name, start_date=start_date, end_date=end_date)
  stock_daily_basic = pro.daily_basic(ts_code=code_name, start_date=start_date, end_date=end_date,
                    fields='close,trade_date,turnover_rate,volume_ratio,pe,pb')
  stock_week_data = pro.weekly(ts_code=code_name, start_date=start_date, end_date=end_date)
  stock_month_data = pro.monthly(ts_code=code_name, start_date=start_date, end_date=end_date)
  stock_name_change = pro.namechange(ts_code=code_name, fields='ts_code,name')
  stock_information = pro.stock_company(ts_code=code_name, fields='introduction,main_business,business_scope')

  # 日数据处理
  data = stock_data.loc[:, ['trade_date', 'open', 'close', 'high', 'low', 'vol']] # :取所有行数据,后面取date列,open列等数据
  data = data.rename(columns={'trade_date': 'Date', 'open': 'Open', 'close': 'Close', 'high': 'High', 'low': 'Low',
                'vol': 'Volume'}) # 更换列名,为后面函数变量做准备
  data.set_index('Date', inplace=True) # 设置date列为索引,覆盖原来索引,这个时候索引还是 object 类型,就是字符串类型。
  # 将object类型转化成 DateIndex 类型,pd.DatetimeIndex 是把某一列进行转换,同时把该列的数据设置为索引 index。
  data.index = pd.DatetimeIndex(data.index)
  data = data.sort_index(ascending=True) # 将时间顺序升序,符合时间序列

  # 基本面指标数据处理
  stock_daily_basic.set_index('trade_date', inplace=True) # 设置date列为索引,覆盖原来索引,这个时候索引还是 object 类型,就是字符串类型。
  # 将object类型转化成 DateIndex 类型,pd.DatetimeIndex 是把某一列进行转换,同时把该列的数据设置为索引 index。
  stock_daily_basic.index = pd.DatetimeIndex(stock_daily_basic.index)
  stock_daily_basic = stock_daily_basic.sort_index(ascending=True) # 将时间顺序升序,符合时间序列
  print(stock_daily_basic)

  # 周数据处理
  week_data = stock_week_data.loc[:, ['trade_date', 'open', 'close', 'high', 'low', 'vol']]
  week_data = week_data.rename(columns={'trade_date': 'Date', 'open': 'Open', 'close': 'Close', 'high': 'High',
                     'low': 'Low', 'vol': 'Volume'}) # 更换列名,为后面函数变量做准备
  week_data.set_index('Date', inplace=True) # 设置date列为索引,覆盖原来索引,这个时候索引还是 object 类型,就是字符串类型。
  # 将object类型转化成 DateIndex 类型,pd.DatetimeIndex 是把某一列进行转换,同时把该列的数据设置为索引 index。
  week_data.index = pd.DatetimeIndex(week_data.index)
  week_data = week_data.sort_index(ascending=True) # 将时间顺序升序,符合时间序列

  # 月数据处理
  month_data = stock_month_data.loc[:, ['trade_date', 'open', 'close', 'high', 'low', 'vol']]
  month_data = month_data.rename(columns={'trade_date': 'Date', 'open': 'Open', 'close': 'Close', 'high': 'High',
                      'low': 'Low', 'vol': 'Volume'}) # 更换列名,为后面函数变量做准备
  month_data.set_index('Date', inplace=True) # 设置date列为索引,覆盖原来索引,这个时候索引还是 object 类型,就是字符串类型。
  # 将object类型转化成 DateIndex 类型,pd.DatetimeIndex 是把某一列进行转换,同时把该列的数据设置为索引 index。
  month_data.index = pd.DatetimeIndex(month_data.index)
  month_data = month_data.sort_index(ascending=True) # 将时间顺序升序,符合时间序列

  # 公司信息处理
  stock_company_code = stock_name_change.at[0, 'ts_code']
  stock_company_name = stock_name_change.at[0, 'name']
  stock_introduction = stock_information.at[0, 'introduction']
  stock_main_business = stock_information.at[0, 'main_business']
  stock_business_scope = stock_information.at[0, 'business_scope']

  # K线图图形输出
  daily_fig, axlist = mpf.plot(data, type='candle', mav=(5, 10, 20), volume=True,
                 show_nontrading=False, returnfig=True)
  # 注意必须按照选项卡的排列顺序渲染图形输出,假如你把matplotlib的图形放到最后,则会出现图像错位现象,不信你可以把以下的代码放到month_fig后试下
  plt_stock_daily_basic = plt.figure(facecolor='white')
  plt.suptitle('Daily Basic Indicator', size=10)

  fig_close = plt.subplot2grid((3, 2), (0, 0), colspan=2) # 创建网格子绘图,按行切分成3份,列切分成2分,位置(0,0),横向占用2列
  fig_close.set_title('Close Price')
  plt.xticks(stock_daily_basic.index, rotation=45) # 设置x轴时间显示方向,放在这跟放在最后显示效果不一样
  fig_close.plot(stock_daily_basic.index, stock_daily_basic['close'])
  plt.xlabel('Trade Day')
  plt.ylabel('Close')
  plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m')) # 設置x軸主刻度顯示格式(日期)
  plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=1)) # 設置x軸主刻度間距

  fig_turnover_rate = plt.subplot2grid((3, 2), (1, 0)) # 创建网格子绘图,按行切分成3份,列切分成2分,位置(1,0)
  fig_turnover_rate.set_title('Turnover Rate')
  plt.xticks(stock_daily_basic.index, rotation=45) # 设置x轴时间显示方向,放在这跟放在最后显示效果不一样
  fig_turnover_rate.bar(stock_daily_basic.index, stock_daily_basic['turnover_rate'], facecolor='red')
  plt.xlabel('Trade Day')
  plt.ylabel('Turnover Rate')
  plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m')) # 設置x軸主刻度顯示格式(日期)
  plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=2)) # 設置x軸主刻度間距

  fig_volume_ratio = plt.subplot2grid((3, 2), (2, 0)) # 创建网格子绘图,按行切分成3份,列切分成2分,位置(1,2)
  fig_volume_ratio.set_title('Volume Ratio')
  plt.xticks(stock_daily_basic.index, rotation=45) # 设置x轴时间显示方向,放在这跟放在最后显示效果不一样
  fig_volume_ratio.bar(stock_daily_basic.index, stock_daily_basic['volume_ratio'])
  plt.xlabel('Trade Day')
  plt.ylabel('Volume Ratio')
  plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m')) # 設置x軸主刻度顯示格式(日期)
  plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=2)) # 設置x軸主刻度間距

  fig_pe = plt.subplot2grid((3, 2), (1, 1)) # 创建网格子绘图,按行切分成3份,列切分成2分,位置在第3行,第1列
  fig_pe.set_title('PE')
  plt.xticks(stock_daily_basic.index, rotation=45) # 设置x轴时间显示方向,放在这跟放在最后显示效果不一样
  fig_pe.plot(stock_daily_basic.index, stock_daily_basic['pe'])
  plt.xlabel('Trade Day')
  plt.ylabel('PE')
  plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m')) # 設置x軸主刻度顯示格式(日期)
  plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=2)) # 設置x軸主刻度間距

  fig_pb = plt.subplot2grid((3, 2), (2, 1)) # 创建网格子绘图,按行切分成3份,列切分成2分,位置在第3行,第2列
  fig_pb.set_title('PB')
  plt.xticks(stock_daily_basic.index, rotation=45) # 设置x轴时间显示方向,放在这跟放在最后显示效果不一样
  fig_pb.plot(stock_daily_basic.index, stock_daily_basic['pb'])
  plt.xlabel('Trade Day')
  plt.ylabel('PB')
  plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m')) # 設置x軸主刻度顯示格式(日期)
  plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=2)) # 設置x軸主刻度間距
  plt_stock_daily_basic.tight_layout(h_pad=-2, w_pad=0) # 解决子图图形重叠问题

  week_fig, axlist = mpf.plot(week_data, type='candle', mav=(5, 10, 20), volume=True,
                show_nontrading=False, returnfig=True)
  month_fig, axlist = mpf.plot(month_data, type='candle', mav=(5, 10, 20), volume=True,
                 show_nontrading=False, returnfig=True)

  canvas_daily = FigureCanvasTkAgg(daily_fig, master=stock_graphics_daily) # 设置tkinter绘制区
  canvas_daily.draw()
  toolbar_daily = NavigationToolbar2Tk(canvas_daily, stock_graphics_daily)
  toolbar_daily.update() # 显示图形导航工具条
  canvas_daily._tkcanvas.pack(side=BOTTOM, fill=BOTH, expand=1)

  canvas_stock_daily_basic = FigureCanvasTkAgg(plt_stock_daily_basic, master=stock_graphics_daily_basic)
  canvas_stock_daily_basic.draw()
  toolbar_stock_daily_basic = NavigationToolbar2Tk(canvas_stock_daily_basic, stock_graphics_daily_basic)
  toolbar_stock_daily_basic.update() # 显示图形导航工具条
  canvas_stock_daily_basic._tkcanvas.pack(side=BOTTOM, fill=BOTH, expand=1)
  plt.close()

  canvas_week = FigureCanvasTkAgg(week_fig, master=stock_graphics_week) # 设置tkinter绘制区
  canvas_week.draw()
  toolbar_week = NavigationToolbar2Tk(canvas_week, stock_graphics_week)
  toolbar_week.update() # 显示图形导航工具条
  canvas_week._tkcanvas.pack(side=BOTTOM, fill=BOTH, expand=1)

  canvas_month = FigureCanvasTkAgg(month_fig, master=stock_graphics_month) # 设置tkinter绘制区
  canvas_month.draw()
  toolbar_month = NavigationToolbar2Tk(canvas_month, stock_graphics_month)
  toolbar_month.update() # 显示图形导航工具条
  canvas_month._tkcanvas.pack(side=BOTTOM, fill=BOTH, expand=1)

  company_text = tix.Text(company_information, bg='white', undo=True, wrap=tix.CHAR)

  company_text.insert(tix.INSERT, stock_company_code)
  company_text.tag_add('tag1', '1.0', '1.9')
  company_text.tag_config('tag1', foreground='red', justify=CENTER)
  company_text.insert(tix.INSERT, '\n')

  company_text.insert(tix.INSERT, stock_company_name)
  company_text.tag_add('tag2', '2.0', '2.9')
  company_text.tag_config('tag2', foreground='red', justify=CENTER)
  company_text.insert(tix.INSERT, '\n')

  company_text.insert(tix.INSERT, '  ')
  company_text.insert(tix.INSERT, '公司简介:')
  company_text.tag_add('tag3', '3.3', '3.9')
  company_text.tag_config('tag3', foreground='red', font=tf.Font(family='SimHei', size=12))
  company_text.insert(tix.INSERT, stock_introduction)
  company_text.tag_add('tag4', '3.9', 'end')
  company_text.tag_config('tag4', foreground='black', spacing1=20, spacing2=10,
              font=tf.Font(family='SimHei', size=12))
  company_text.insert(tix.INSERT, '\n')

  company_text.insert(tix.INSERT, '  ')
  company_text.insert(tix.INSERT, '主要业务及产品:')
  company_text.tag_add('tag5', '4.4', '4.12')
  company_text.tag_config('tag5', foreground='blue')
  company_text.insert(tix.INSERT, stock_main_business)
  company_text.tag_add('tag6', '4.12', 'end')
  company_text.tag_config('tag6', spacing1=20, spacing2=10,
              font=tf.Font(family='SimHei', size=12))
  company_text.insert(tix.INSERT, '\n')

  company_text.insert(tix.INSERT, '  ')
  company_text.insert(tix.INSERT, '经营范围:')
  company_text.tag_add('tag7', '5.4', '5.9')
  company_text.tag_config('tag7', foreground='#cc6600')
  company_text.insert(tix.INSERT, stock_business_scope)
  company_text.tag_add('tag8', '5.9', 'end')
  company_text.tag_config('tag8', spacing1=20, spacing2=10,
              font=tf.Font(family='SimHei', size=12))
  company_text.insert(tix.INSERT, '\n')

  company_text.pack(fill=BOTH, expand=1)


# 在主框架下创建查询按钮子框架
search_frame = tix.Frame(main_frame, borderwidth=1, bg='#353535', relief=tix.SUNKEN)
search_frame.pack()
# 创建查询按钮并设置功能
stock_find = tix.Button(search_frame, text='查询', width=5, height=1, command=go)
stock_find.pack()

root.mainloop()

新闻标题:使用pythontushareTkinter实现简单股票可视化查询系统-创新互联
文章起源:http://cdiso.cn/article/djjpec.html

其他资讯