Python+OpenCV实现实时眼动追踪的示例代码-创新互联
使用Python+OpenCV实现实时眼动追踪,不需要高端硬件简单摄像头即可实现,效果图如下所示。
创新新互联,凭借十余年的成都网站设计、成都网站建设经验,本着真心·诚心服务的企业理念服务于成都中小企业设计网站有上千家案例。做网站建设,选创新互联公司。项目演示参见:https://www.bilibili.com/video/av75181965/
项目主程序如下:
import sys import cv2 import numpy as np import process from PyQt5.QtCore import QTimer from PyQt5.QtWidgets import QApplication, QMainWindow from PyQt5.uic import loadUi from PyQt5.QtGui import QPixmap, QImage class Window(QMainWindow): def __init__(self): super(Window, self).__init__() loadUi('GUImain.ui', self) with open("style.css", "r") as css: self.setStyleSheet(css.read()) self.face_decector, self.eye_detector, self.detector = process.init_cv() self.startButton.clicked.connect(self.start_webcam) self.stopButton.clicked.connect(self.stop_webcam) self.camera_is_running = False self.previous_right_keypoints = None self.previous_left_keypoints = None self.previous_right_blob_area = None self.previous_left_blob_area = None def start_webcam(self): if not self.camera_is_running: self.capture = cv2.VideoCapture(cv2.CAP_DSHOW) # VideoCapture(0) sometimes drops error #-1072875772 if self.capture is None: self.capture = cv2.VideoCapture(0) self.camera_is_running = True self.timer = QTimer(self) self.timer.timeout.connect(self.update_frame) self.timer.start(2) def stop_webcam(self): if self.camera_is_running: self.capture.release() self.timer.stop() self.camera_is_running = not self.camera_is_running def update_frame(self): # logic of the main loop _, base_image = self.capture.read() self.display_image(base_image) processed_image = cv2.cvtColor(base_image, cv2.COLOR_RGB2GRAY) face_frame, face_frame_gray, left_eye_estimated_position, right_eye_estimated_position, _, _ = process.detect_face( base_image, processed_image, self.face_decector) if face_frame is not None: left_eye_frame, right_eye_frame, left_eye_frame_gray, right_eye_frame_gray = process.detect_eyes(face_frame, face_frame_gray, left_eye_estimated_position, right_eye_estimated_position, self.eye_detector) if right_eye_frame is not None: if self.rightEyeCheckbox.isChecked(): right_eye_threshold = self.rightEyeThreshold.value() right_keypoints, self.previous_right_keypoints, self.previous_right_blob_area = self.get_keypoints( right_eye_frame, right_eye_frame_gray, right_eye_threshold, previous_area=self.previous_right_blob_area, previous_keypoint=self.previous_right_keypoints) process.draw_blobs(right_eye_frame, right_keypoints) right_eye_frame = np.require(right_eye_frame, np.uint8, 'C') self.display_image(right_eye_frame, window='right') if left_eye_frame is not None: if self.leftEyeCheckbox.isChecked(): left_eye_threshold = self.leftEyeThreshold.value() left_keypoints, self.previous_left_keypoints, self.previous_left_blob_area = self.get_keypoints( left_eye_frame, left_eye_frame_gray, left_eye_threshold, previous_area=self.previous_left_blob_area, previous_keypoint=self.previous_left_keypoints) process.draw_blobs(left_eye_frame, left_keypoints) left_eye_frame = np.require(left_eye_frame, np.uint8, 'C') self.display_image(left_eye_frame, window='left') if self.pupilsCheckbox.isChecked(): # draws keypoints on pupils on main window self.display_image(base_image) def get_keypoints(self, frame, frame_gray, threshold, previous_keypoint, previous_area): keypoints = process.process_eye(frame_gray, threshold, self.detector, prevArea=previous_area) if keypoints: previous_keypoint = keypoints previous_area = keypoints[0].size else: keypoints = previous_keypoint return keypoints, previous_keypoint, previous_area def display_image(self, img, window='main'): # Makes OpenCV images displayable on PyQT, displays them qformat = QImage.Format_Indexed8 if len(img.shape) == 3: if img.shape[2] == 4: # RGBA qformat = QImage.Format_RGBA8888 else: # RGB qformat = QImage.Format_RGB888 out_image = QImage(img, img.shape[1], img.shape[0], img.strides[0], qformat) # BGR to RGB out_image = out_image.rgbSwapped() if window == 'main': # main window self.baseImage.setPixmap(QPixmap.fromImage(out_image)) self.baseImage.setScaledContents(True) if window == 'left': # left eye window self.leftEyeBox.setPixmap(QPixmap.fromImage(out_image)) self.leftEyeBox.setScaledContents(True) if window == 'right': # right eye window self.rightEyeBox.setPixmap(QPixmap.fromImage(out_image)) self.rightEyeBox.setScaledContents(True) if __name__ == "__main__": app = QApplication(sys.argv) window = Window() window.setWindowTitle("GUI") window.show() sys.exit(app.exec_())
当前文章:Python+OpenCV实现实时眼动追踪的示例代码-创新互联
分享链接:http://cdiso.cn/article/djdces.html