数据仓库逻辑架构设计的介绍-创新互联
今天小编给大家分享的是数据仓库逻辑架构设计的介绍,相信很多人都不太了解,为了让大家更加了解数据仓库逻辑架构设计,所以给大家总结了以下内容,一起往下看吧。一定会有所收获的哦。
我们提供的服务有:网站设计、网站建设、微信公众号开发、网站优化、网站认证、江城ssl等。为1000多家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的江城网站制作公司离线数据仓库通常基于维度建模理论来构建,离线数据仓库通常从逻辑上进行分层,主要出于以下考虑:
1、隔离性:用户使用的应该是数据团队精心加工后的数据,而不是来自于业务系统的原始数据,这样做的好处一是,用户使用的是精心准备过的、规范的、干净的、从业务视角的数据。非常容易理解和使用。二是如果上游业务系统发生变革甚至重构(比如表结构、字段、业务含义等),数据团队会负责处理所有这些变化,最小化对下游用户的影响。
2、性能和可为维护性: 专业的人做专业的事,数据分层使得数据的加工基本都在数据团队,从而相同的业务逻辑不用重复执行,节省了相应的存储和计算开销。此外数据分层也使得数据仓库的维护变得清晰和便捷,每层只负责各自的任务,某层的数据加工出现问题,只需要修改该层即可。
3、规范性:对于一个公司和组织来说,数据的口径非常重要,大家谈论一个指标的时候,必须基于一个明确的、公认i的口径,此外表、字段以及指标必须进行规范。
4、ODS层:数据仓库源头系统的数据表通常会原封不动地存储一份,这称为ODS(Operation Data Store)层, ODS层也经常会被称为准备区(Staging area),它们是后续数据仓库层(即基于Kimball维度建模生成的事实表和维度表层,以及基于这些事实表和明细表加工的汇总层数据)加工数据的来源,同时ODS层也存储着历史的增量数据或全量数据。
5、DWD和DWS层:数据仓库明细层(Data Warehouse Detail , DWD)和数据仓库汇总层(Data Warehouse Summary, DWS)是数据仓库的主题内容。DWD和DWS层的数据是ODS层经过ETL清洗、转换、加载生成的,而且它们通常都是基于Kimball的维度建模理论来构建的,并通过一致性维度和数据总线来保证各个子主题的维度一致性。
6、应用层(ADS):应用层主要是各个业务放或者部门基于DWD和DWS建立的数据集市(Data Mart,DM),数据集市DM是相对于DWD和DWS的数据仓库(Data Warehouse, DW)来说的。一般来说,应用层的数据来源于DW层,但原则上不允许直接访问ODS层。此外,相比DW层,应用层只包含部门或因为方自己关心的明细层和汇总层数据。
以上就是数据仓库逻辑架构设计的介绍的详细内容了,看完之后是否有所收获呢?如果想了解更多相关内容,欢迎来创新互联行业资讯!
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
网页名称:数据仓库逻辑架构设计的介绍-创新互联
URL分享:http://cdiso.cn/article/dicdic.html