python函数绘图 python函数绘图pyplot教程

python两个函数图像怎么分开画

1、plt.legendplt.legend(loc=0)#显示图例的位置。

泰山ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为成都创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:028-86922220(备注:SSL证书合作)期待与您的合作!

2、plt.figureplt.figure(figsize=(14,6),dpi=80)#设置绘图区域的大小和像素。

3、plt.xticksplt.xticks(new_year)#设置x轴的刻度线为new_year,new_year可以为数组。

4、plt.xlabelplt.xlabel('year')#x轴标签。

5、plt.plotplt.plot(number,color='blue',label="actualvalue")#将实际值的折线设置为蓝色。

6、两个图分开fig,axes=plt.subplots(2,1,sharex=True,figsize=(10,10))。

7、画竖直线plt.axvline(99,linestyle="dotted",linewidth=4,color='r')#99表示横坐标。

8、图片保存plt.savefig('timeseries_y.jpg')。

python两个函数图像怎么分开画而且加表格

一、函数说明

在使用python作图时,应用最广的就是matplotlib包,但我们平时使用matplotlib时主要是画一些简单的图表,很少有涉及分段函数。本次针对数值实验中两个较为复杂的函数,使用其构建分段函数图像。

二、图像代码

2.11、函数公式:

y=4sin(4πt)-sgn(t-0.3)-sgn(0.72-t)

2.12、代码如下:

import numpy as np

import matplotlib.pyplot as plt

def sgn(x):

if x0:

return 1

elif x0:

return -1

else:

return 0

t=np.arange(0,1,0.01)

y=[]

for i in t:

y_1=4*np.sin(4*np.pi*i)-sgn(i-0.3)-sgn(0.72-i)

y.append(y_1)

plt.plot(t,y)

plt.xlabel("t")

plt.ylabel("y")

plt.title("Heavsine")

plt.show()

2.13、运行结果如下:

81036331d721706ae12808beb99b9574.png

2.21、函数公式:

479029.html

2.22、代码如下:

import numpy as np

import matplotlib.pyplot as plt

def g(x):

if x0:

return x

else:

return 0

t=np.arange(0,1,0.01)

y=[]

for i in t:

y_1=g(i*(1-i))*np.sin((2*np.pi*1.05)/(i+0.05))

y.append(y_1)

plt.plot(t,y)

plt.xlabel("t")

plt.ylabel("y")

plt.title("TimeSine")

plt.show()

python绘图篇

1,xlable,ylable设置x,y轴的标题文字。

2,title设置标题。

3,xlim,ylim设置x,y轴显示范围。

plt.show()显示绘图窗口,通常情况下,show()会阻碍程序运行,带-wthread等参数的环境下,窗口不会关闭。

plt.saveFig()保存图像。

面向对象绘图

1,当前图表和子图可以用gcf(),gca()获得。

subplot()绘制包含多个图表的子图。

configure subplots,可调节子图与图表边框距离。

可以通过修改配置文件更改对象属性。

图标显示中文

1,在程序中直接指定字体。

2, 在程序开始修改配置字典reParams.

3,修改配置文件。

Artist对象

1,图标的绘制领域。

2,如何在FigureCanvas对象上绘图。

3,如何使用Renderer在FigureCanvas对象上绘图。

FigureCanvas和Render处理底层图像操作,Artist处理高层结构。

分为简单对象和容器对象,简单的Aritist是标准的绘图元件,例如Line 2D,Rectangle,Text,AxesImage等,而容器类型包含许多简单的的 Aritist对象,使他们构成一个整体,例如Axis,Axes,Figure等。

直接创建Artist对象进项绘图操作步奏:

1,创建Figure对象(通过figure()函数,会进行许多初始化操作,不建议直接创建。)

2,为Figure对象创建一个或多个Axes对象。

3,调用Axes对象的方法创建各类简单的Artist对象。

Figure容器

如何找到指定的Artist对象。

1,可调用add_subplot()和add_axes()方法向图表添加子图。

2,可使用for循环添加栅格。

3,可通过transform修改坐标原点。

Axes容器

1,patch修改背景。

2,包含坐标轴,坐标网格,刻度标签,坐标轴标题等内容。

3,get_ticklabels(),,get-ticklines获得刻度标签和刻度线。

1,可对曲线进行插值。

2,fill_between()绘制交点。

3,坐标变换。

4,绘制阴影。

5,添加注释。

1,绘制直方图的函数是

2,箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位

数、中位数、第三四分位数与最大值来描述数据的一种方法,它可以粗略地看出数据是否具有对称性以及分

布的分散程度等信息,特别可以用于对几个样本的比较。

3,饼图就是把一个圆盘按所需表达变量的观察数划分为若干份,每一份的角度(即面积)等价于每个观察

值的大小。

4,散点图

5,QQ图

低层绘图函数

类似于barplot(),dotchart()和plot()这样的函数采用低层的绘图函数来画线和点,来表达它们在页面上放置的位置以及其他各种特征。

在这一节中,我们会描述一些低层的绘图函数,用户也可以调用这些函数用于绘图。首先我们先讲一下R怎么描述一个页面;然后我们讲怎么在页面上添加点,线和文字;最后讲一下怎么修改一些基本的图形。

绘图区域与边界

R在绘图时,将显示区域划分为几个部分。绘制区域显示了根据数据描绘出来的图像,在此区域内R根据数据选择一个坐标系,通过显示出来的坐标轴可以看到R使用的坐标系。在绘制区域之外是边沿区,从底部开始按顺时针方向分别用数字1到4表示。文字和标签通常显示在边沿区域内,按照从内到外的行数先后显示。

添加对象

在绘制的图像上还可以继续添加若干对象,下面是几个有用的函数,以及对其功能的说明。

•points(x, y, ...),添加点

•lines(x, y, ...),添加线段

•text(x, y, labels, ...),添加文字

•abline(a, b, ...),添加直线y=a+bx

•abline(h=y, ...),添加水平线

•abline(v=x, ...),添加垂直线

•polygon(x, y, ...),添加一个闭合的多边形

•segments(x0, y0, x1, y1, ...),画线段

•arrows(x0, y0, x1, y1, ...),画箭头

•symbols(x, y, ...),添加各种符号

•legend(x, y, legend, ...),添加图列说明

Python绘图之(1)Turtle库详解

Turtle库是Python语言中一个很流行的绘制图像的函数库,想象一个小乌龟,在一个横轴为x、纵轴为y的坐标系原点,(0,0)位置开始,它根据一组函数指令的控制,在这个平面坐标系中移动,从而在它爬行的路径上绘制了图形。

画布就是turtle为我们展开用于绘图区域,我们可以设置它的大小和初始位置。

设置画布大小

turtle.screensize(canvwidth=None, canvheight=None, bg=None),参数分别为画布的宽(单位像素), 高, 背景颜色。

如:turtle.screensize(800,600, "green")

turtle.screensize() #返回默认大小(400, 300)

turtle.setup(width=0.5, height=0.75, startx=None, starty=None),参数:width, height: 输入宽和高为整数时, 表示像素; 为小数时, 表示占据电脑屏幕的比例,(startx, starty): 这一坐标表示矩形窗口左上角顶点的位置, 如果为空,则窗口位于屏幕中心。

如:turtle.setup(width=0.6,height=0.6)

turtle.setup(width=800,height=800, startx=100, starty=100)

2.1 画笔的状态

在画布上,默认有一个坐标原点为画布中心的坐标轴,坐标原点上有一只面朝x轴正方向小乌龟。这里我们描述小乌龟时使用了两个词语:坐标原点(位置),面朝x轴正方向(方向), turtle绘图中,就是使用位置方向描述小乌龟(画笔)的状态。

2.2 画笔的属性

画笔(画笔的属性,颜色、画线的宽度等)

1) turtle.pensize():设置画笔的宽度;

2) turtle.pencolor():没有参数传入,返回当前画笔颜色,传入参数设置画笔颜色,可以是字符串如"green", "red",也可以是RGB 3元组。

3) turtle.speed(speed):设置画笔移动速度,画笔绘制的速度范围[0,10]整数,数字越大越快。

2.3 绘图命令

操纵海龟绘图有着许多的命令,这些命令可以划分为3种:一种为运动命令,一种为画笔控制命令,还有一种是全局控制命令。

(1) 画笔运动命令

(2) 画笔控制命令

(3) 全局控制命令

(4) 其他命令

3. 命令详解

3.1 turtle.circle(radius, extent=None, steps=None)

描述:以给定半径画圆

参数:

radius(半径):半径为正(负),表示圆心在画笔的左边(右边)画圆;

extent(弧度) (optional);

steps (optional) (做半径为radius的圆的内切正多边形,多边形边数为steps)。

举例:

circle(50) # 整圆;

circle(50,steps=3) # 三角形;

circle(120, 180) # 半圆

实例:

1、太阳花

2、五角星

3、时钟程序

用Python画图

今天开始琢磨用Python画图,没使用之前是一脸懵的,我使用的开发环境是Pycharm,这个输出的是一行行命令,这个图画在哪里呢?

搜索之后发现,它会弹出一个对话框,然后就开始画了,比如下图

第一个常用的库是Turtle,它是Python语言中一个很流行的绘制图像的函数库,这个词的意思就是乌龟,你可以想象下一个小乌龟在一个x和y轴的平面坐标系里,从原点开始根据指令控制,爬行出来就是绘制的图形了。

它最常用的指令就是旋转和移动,比如画个圆,就是绕着圆心移动;再比如上图这个怎么画呢,其实主要就两个命令:

turtle.forward(200)

turtle.left(170)

第一个命令是移动200个单位并画出来轨迹

第二个命令是画笔顺时针转170度,注意此时并没有移动,只是转角度

然后呢? 循环重复就画出来这个图了

好玩吧。

有需要仔细研究的可以看下这篇文章 ,这个牛人最后用这个库画个移动的钟表,太赞了。

Turtle虽好玩,但是我想要的是我给定数据,然后让它画图,这里就找到另一个常用的画图的库了。

Matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。其中,matplotlib的pyplot模块一般是最常用的,可以方便用户快速绘制二维图表。

使用起来也挺简单,

首先import matplotlib.pyplot as plt 导入画图的图。

然后给定x和y,用这个命令plt.plot(x, y)就能画图了,接着用plt.show()就可以把图形展示出来。

接着就是各种完善,比如加标题,设定x轴和y轴标签,范围,颜色,网格等等,在 这篇文章里介绍的很详细。

现在互联网的好处就是你需要什么内容,基本上都能搜索出来,而且还是免费的。

我为什么要研究这个呢?当然是为了用,比如我把比特币的曲线自己画出来可好?

假设现在有个数据csv文件,一列是日期,另一列是比特币的价格,那用这个命令画下:

这两列数据读到pandas中,日期为df['time']列,比特币价格为df['ini'],那我只要使用如下命令

plt.plot(df['time'], df['ini'])

plt.show()

就能得到如下图:

自己画的是不是很香,哈哈!

然后呢,我在上篇文章 中介绍过求Ahr999指数,那可不可以也放到这张图中呢?不就是加一条命令嘛

plt.plot(df['time'], df['Ahr999'])

图形如下:

但是,Ahr999指数怎么就一条线不动啊, 原来两个Y轴不一致,显示出来太怪了,需要用多Y轴,问题来了。

继续谷歌一下,把第二个Y轴放右边就行了,不过呢得使用多图,重新绘制

fig = plt.figure() # 多图

ax1 = fig.add_subplot(111)

ax1.plot(df['time'], df['ini'], label="BTC price")  # 绘制第一个图比特币价格

ax1.set_ylabel('BTC price') # 加上标签

# 第二个直接对称就行了

ax2 = ax1.twinx()# 在右边增加一个Y轴

ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999")  # 绘制第二个图Ahr999指数,红色

ax2.set_ylim([0, 50])# 设定第二个Y轴范围

ax2.set_ylabel('ahr999')

plt.grid(color="k", linestyle=":")# 网格

fig.legend(loc="center")#图例

plt.show()

跑起来看看效果,虽然丑了点,但终于跑通了。

这样就可以把所有指数都绘制到一张图中,等等,三个甚至多个Y轴怎么加?这又是一个问题,留给爱思考爱学习的你。

有了自己的数据,建立自己的各个指数,然后再放到图形界面中,同时针对异常情况再自动进行提醒,比如要抄底了,要卖出了,用程序做出自己的晴雨表。

Python matplotlib之函数图像绘制、线条rc参数设置

为避免中文显示出错,需导入matplotlib.pylab库

1.2.1 确定数据

1.2.2 创建画布

1.2.3 添加标题

1.2.4 添加x,y轴名称

1.2.5 添加x,y轴范围

1.2.6 添加x,y轴刻度

1.2.7 绘制曲线、图例, 并保存图片

保存图片时,dpi为清晰度,数值越高越清晰。请注意,函数结尾处,必须加plt.show(),不然图像不显示。

绘制流程与绘制不含子图的图像一致,只需注意一点:创建画布。

合理调整figsize、dpi,可避免出现第一幅图横轴名称与第二幅图标题相互遮盖的现象.

2.2.1 rc参数类型

2.2.2 方法1:使用rcParams设置

2.2.3 方法2:plot内设置

2.2.4 方法3:plot内简化设置

方法2中,线条形状,linestyle可简写为ls;线条宽度,linewidth可简写为lw;线条颜色,color可简写为c,等等。


本文标题:python函数绘图 python函数绘图pyplot教程
本文URL:http://cdiso.cn/article/hjjcpd.html

其他资讯