R语言导入导出数据的方法有哪些-创新互联
这篇文章主要介绍R语言导入导出数据的方法有哪些,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
成都创新互联是一家专业提供东乡企业网站建设,专注与网站设计、成都网站设计、H5场景定制、小程序制作等业务。10年已为东乡众多企业、政府机构等服务。创新互联专业网站设计公司优惠进行中。导出:
对于某一数据集导出文件的方法
导出例子:write.csv(data_1,file = "d:/1111111111.csv")
其中data_1是你的数据集,file是你的存储路径和要存储的名字
导入:
1 使用键盘输入数据
(1) 创建一个空数据框(或矩阵),其中变量名和变量的模式需与理想中的最终数据集一致;
(2)针对这个数据对象调用文本编辑器,输入你的数据,并将结果保存回此数据对象中。
在下例中,你将创建一个名为mydata的数据框,它含有三个变量:age(数值型)、gender(字符型)和weight(数值型)。然后你将调用文本编辑器,键入数据,最后保存结果。
>mydata<-data.frame(age=numeric(0),gender=character(0),weight=numeric(0))
>mydata<-edit(mydata)
2 从带分隔符的文本文件中导入数据
你可以使用read.table()从带分隔符的文本文件中导入数据。此函数可读入一个表格格式
的文件并将其保存为一个数据框。其语法如下:
mydataframe<-read.table(file.header=logical_value,sep="delimiter",row,names="name")
其中,file是一个带分隔符的ASCII文本文件,header是一个表明首行是否包含了变量名的逻辑值(TRUE或FALSE),sep用来指定分隔数据的分隔符,row.names是一个可选参数,用以指定一个或多个表示行标识符的变量。
请注意,参数sep允许你导入那些使用逗号以外的符号来分隔行内数据的文件。你可以使用sep="\t"读取以制表符分隔的文件。此参数的默认值为sep="",即表示分隔符可为一个或多个空格、制表符、换行符或回车符.
默认情况下,字符型变量将转换为因子。我们并不总是希望程序这样做(例如处理一个含有被调查者评论的变量时)。有许多方法可以禁止这种转换行为。其中包括设置选项stringsAsFactors=FALSE,这将停止对所有字符型变量的此种转换。另一种方法是使用选项colClasses为每一列指定一个类,例如logical(逻辑型)、numeric(数值型)、character
(字符型)、factor(因子)。
函数read.table()还拥有许多微调数据导入方式的追加选项。
3 导入 Excle数据
读取一个Excel文件的好方式,就是在Excel中将其导出为一个逗号分隔文件(csv),并使用前文描述的方式将其导入R中。在Windows系统中,你也可以使用RODBC包来访问Excel文件。
电子表格的第一行应当包含变量/列的名称。
首先,下载并安装RODBC包。
你可以使用以下代码导入数据:
>install.packages("RODBC") library(RODBC) channel<-odbcConnectExcel("myfile.xls") mydataframe<-sqlFetch(hannel,"mysheet") odbcClose(channel)
这里的myfile.xls是一个Excel文件,mysheet是要从这个工作簿中读取工作表的名称,channel是一个由odbcConnectExcel()返回的RODBC连接对象,mydataframe是返回的数据框
注意:Excel2007使用了一种名为XLSX的文件格式,实质上是多个XML文件组成的压缩包。xlsx包可以用来读取这种格式的电子表格。在第一次使用此包之前请务必先下载并安装好。包中的函数read.xlsx()可将XLSX文件中的工作表导入为一个数据框。其最简单的调用格式是read.xlsx(file,n),其中file是Excel2007工作簿的所在路径,n则为要导入的工作表序号。
library(xlsx) workbook<-"c:/mywoehbook.xlsx" mydataframe<-read.xlsx(workbook,1)
从位于C盘根目录的工作簿myworkbook.xlsx中导入了第一个工作表.
4 从网页抓取数据
在Web数据抓取(Webscraping)的过程中,用户从互联网上提取嵌入在网页中的信息,并将其保存为R中的数据结构以做进一步的分析。完成这个任务的一种途径是使用函数readLines()下载网页,然后使用如grep()和gsub()一类的函数处理它。对于结构复杂的网页,可以使用RCurl包和XML包来提取其中想要的信息。
5 导入SPSS数据
SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc包中的spss.get()函数。函数spss.get()是对read. spss()的一个封装,它可以为你自动设置后者的许多参数,让整个转换过程更加简单一致,最后得到数据分析人员所期望的结果。
首先,下载并安装Hmisc包(foreign包已被默认安装):
>install.packages("Hmisc") >library(Hmisc) >mydatframe<-spss.get("mydata.sav",use.value.lables="TRUE")
这段代码中,mydata.sav是要导入的SPSS数据文件,use.value.labels=TRUE表示让函数将带有值标签的变量导入为R中水平对应相同的因子,mydataframe是导入后的R数据框。
6导入SAS数据
R中设计了若干用来导入SAS数据集的函数,包括foreign包中的read.ssd()和Hmisc包中的sas.get()。遗憾的是,如果使用的是SAS的较新版本(SAS 9.1或更高版本),你很可能会发现这些函数并不能正常工作,因为R尚未跟进SAS对文件结构的改动。个人推荐两种解决方案。
你可以在SAS中使用PROC EXPORT将SAS数据集保存为一个逗号分隔的文本文件,并使用下叙述的方法将导出的文件读取到R中:
SAS程序:
proc export data=mydata outfile="mydata.csv" dbms=csv run;
R程序:
mydata<-read.table("mydata.csv",header=TRUE,sep=",")
7 导入Stata数据
> library(foreign) > mydata<-read.dta("mydata.dta")
这里,mydata.dta是Stata数据集,mydataframe是返回的R数据框.
8导入netCDF数据
Unidata项目主导的开源软件库netCDF(network Common Data Form,网络通用数据格式)定
义了一种机器无关的数据格式,可用于创建和分发面向数组的科学数据。netCDF格式通常用来存储地球物理数据。ncdf包和ncdf4包为netCDF文件提供了高层的R接口。ncdf包为通过Unidata的netCDF库(版本3或更早)创建的数据文件提供了支持,而且在Windows、MacOS X和Linux上均可使用。ncdf4包支持netCDF 4或更早的版本,但在Windows上尚不可用。
考虑如下代码:
在本例中,对于包含在netCDF文件mynetCDFfile中的变量myvar,其所有数据都被读取并保存到了一个名为myarray的R数组中。
9导入HDF5数据
HDF5(Hierarchical Data Format,分层数据格式)是一套用于管理超大型和结构极端复杂数据集的软件技术方案。hdf5包能够以那些理解HDF5格式的软件可以读取的格式,将R对象写入到一个文件中。这些文件可以在之后被读回R中。这个包是实验性质的.
10访问数据库管理系统
R中有多种面向关系型数据库管理系统(DBMS)的接口,包括MicrosoftSQL Server、MicrosoftAccess、MySQL、Oracle、PostgreSQL、DB2、Sybase、Teradata以及SQLite。使用R来访问存储在外部数据库中的数据是一种分析大数据集的有效手段(参见附录G),并且能够发挥SQL和R各自的优势。
1. ODBC接口
在R中通过RODBC包访问一个数据库也许是最流行的方式,这种方式允许R连接到任意一种拥有ODBC驱动的数据库,其实几乎就是市面上的所有数据库。
第一步是针对你的系统和数据库类型安装和配置合适的ODBC驱动——它们并不是R的一部分。如果你的机器尚未安装必要的驱动,上网搜索一下应该就可以找到。针对选择的数据库安装并配置好驱动后,请安装RODBC包。你可以使用命令install.packages("RODBC")
来安装它。
RODBC包中的主要函数列于表2-2中。
RODBC包允许R和一个通过ODBC连接的SQL数据库之间进行双向通信。这就意味着你不仅可以读取数据库中的数据到R中,同时也可以使用R修改数据库中的内容。假设你想将某个数据库中的两个表(Crime和Punishment)分别导入为R中的两个名为crimedat和pundat的数据框,可以通过如下代码完成这个任务:
library(RODBC) myconn<-odbcConnect("mydsn",uid="Rob",pwd="aardvark") crimedat<-sqlFetch(myconn,Crime) pundat<-sqlQuery(myconn,"select*from Punishment") close(myconn)
这里首先载入了RODBC包,并通过一个已注册的数据源名称(mydsn)和用户名(rob)以及密码(aardvark)打开了一个ODBC数据库连接。连接字符串被传递给sqlFetch,它将Crime表复制到R数据框crimedat中。然后我们对Punishment表执行了SQL语句select并将结果保存到数据框pundat中。最后,我们关闭了连接。函数sqlQuery()非常强大,因为其中可以插入任意的有效SQL语句。这种灵活性赋予了你选择指定变量、对数据取子集、创建新变量,以及重编码和重命名现有变量的能力。
以上是“R语言导入导出数据的方法有哪些”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!
网站名称:R语言导入导出数据的方法有哪些-创新互联
本文地址:http://cdiso.cn/article/doijjc.html